Психология оценки и принятия решений - Плаус Скотт (читать книги онлайн бесплатно полностью без .txt) 📗
РИСУНОК 8.26
Эта схема выплат для второй части парадокса Эллсберга. Единственная перемена — желтый шар теперь стоит $100, а не $0.
30 ШАРОВ
60
ШАРОВ
Альтернатива
для ставки
красный
черный
желтый
Альтернатива 1: Альтернатива 2:
красный шар черный шар
$100 $0
$0$100
$100 $100
рают альтернативу 1 в первом случае и альтернативу 2 — во втором.
Согласно принципу погашения, однако, люди должны выбирать одинаковые альтернативы и в том и в другом случае. Как видно на рис. 8.2, две схемы выигрыша абсолютно идентичны, не считая того, что в первом случае желтый шар не приносит ничего, а во втором — 100 долларов. Поскольку ценность желтого шара одинакова внутри одной схемы (0 долларов в первом случае и 100 долларов — во втором), цена желтого шара не должна влиять на выбор в каждом случае (так же, как одинаковая скорость не должна влиять на выбор между двумя машинами). Однако вопреки теории ожидаемой выгоды, люди часто выбирают различные альтернативы в двух случаях.
Нетранзитивность
Другой принцип рационального принятия решений — принцип транзитивности, который говорит о том, что тот, кто предпочитает альтернативу А альтернативе Б и альтернативу Б — альтернативе В, должен предпочитать альтернативу А альтернативе В. В 7 главе показано, как человек, не соблюдающий принцип транзитивности, может быть использован в качестве «денежной помпы». Другой пример нетранзитивности показан на рис. 8.3. (118:)
РИСУНОК 8.3. Следующее правило принятия решений приводит к переходности предпочтения при выборе между претендентами А, Б и В: если разница в интеллигентности любых двух претендентов больше 10 пунктов — выбери более интеллигентного; если разница меньше или равна 10 пунктам, то более опытного.
ПОКАЗАТЕЛИ
Интеллигентность (IQ)
Опыт (годы)
ПРЕТЕНДЕНТЫ
А
Б
В
120
110
100
1
2
3
Представьте, что вам нужно выбрать одного из трех помощников (на рис. 8.3 они обозначены как помощники А, Б и В). О каждом из них вам известно, что он умен и опытен. Далее представьте, что у вас есть правило: если разница коэффициента умственного развития (IQ) у любых двух помощников более 10 пунктов, выбирать более умного. Если разница равна или меньше — выбирать более опытного.
Это звучит как вполне резонное правило, но взгляните, что выйдет, если следовать ему. Если сравнить помощника А и помощника Б, нужно выбрать второго, так как их IQ не отличается больше, чем на 10 пунктов, а Б более опытен, чем А. Также, сравнивая Б и В, нужно выбрать В, так как разница их IQ не больше 10, но В более опытен. Если сравнить В и А, то надо выбрать А, так как его IQ более чем на 10 пунктов выше, чем IQ В. Итак, помощник Б лучше помощника А, В — лучше Б, а А — лучше В. Таким образом, появляется нетранзитивность, поскольку правило выбора основано на двух разных параметрах — уме и опыте — различающихся очень слабо и обратно пропорциональных.
Действительно ли люди опровергают принцип нетранзитивности? В 1969 году Амос Тверски опубликовал исследование, одна треть участников которого поступала нетранзитивно. Тверски начал эксперимент с того, что ознакомил 18 Гарвардских дипломников с пятью лотереями, представленными на рис. 8.4. Как вы можете видеть, ожидаемая ценность каждой лотереи повышается шансом на выигрыш и понижается его размером. Студентам наугад показывали пары лотерей и просили сказать, какую бы они предпочли. После того как они сделали три вы-
119
РИСУНОК 8.4
Следующие азартные игры были использованы в 1969 году в эксперименте Амоса Тверски. Ожидаемая ценность (ОЦ) каждой игры вычислена путем умножения суммы выигрыша на вероятность победы.
Игра
Вероятность победы
Стоимость ($)
ОЦ (*
А
7/24
5,00
1,46
Б
8/24
4,75
1,58
В
9/24
4,50
1,69
Г
10/24
4,25
1,77
Д
11/24
4,00
1,83
бора из 10 возможных пар (А и Б, А и В и т.д.),Тверски выбрал 8 испытуемых, показавших тенденцию к нетранзитивности, и попросил их приходить к нему в лабораторию раз в неделю для интенсивного пятинедельного эксперимента.
Он обнаружил, что шесть студентов демонстрировали нетранзитивность с постоянством, заслуживающим лучшего применения. Из двух альтернатив, где вероятность выигрыша различалась мало (например, в паре А и Б), они выбирали ту лотерею, где выигрыш был больше. И наоборот, когда разница была максимальной (например, в паре А и Д), испытуемые выбирали ту лотерею, где вероятность выигрыша была выше. Итак, лотерею А они предпочитали лотерее Б, лотерею Б — лотерее В, лотерею В — лотерее Г, лотерею Г — лотерее Д, а лотерею Д — лотерее А. Тверски обнаружил непереходность в примере с помощниками.
Нетранзитивность — это нечто большее, чем просто экспериментальный курьез; она может иметь важное влияние на принимающих решение. Например, «проблема комитета». В ее типичной версии существует совет факультета, состоящий из пяти человек: Энн, Боба, Синди, Дэна и Эллен. Их задача — выборы нового профессора и оценки трем претендентам по трехбалльной системе — показана на рис. 8.5.
РИСУНОК 8.5
Это распределение предпочтений в типичной версии проблемы комитета. Более низкие баллы обозначают большее предпочтение (например, Энн предпочитает, скорее, Джо Шмоу нежели Джейн Доу, и Джейн Доу — нежели Эйнштейна).
ЧЛЕНЫ КОМИССИИ
Кандидаты
Энн
Боб
Синди
Дэн
Эллен
Джо Шмоу Джейн Доу Эйнштейн
1 2 3
1 3 2
2 3 1
3 1 2
3 1 2
120
Представьте, что вы глава комитета, вы знаете всех претендентов и хотели бы, чтобы выбрали Эйнштейна. Что вы сделаете?
Ответ следующий: вы должны избежать прямого выбора между Эйнштейном и Джейн Доу, потому что трое членов комитета предпочли Доу Эйнштейну (Энн, Дэн и Эллен). Вместо этого вы должны попросить членов комитета выбрать между Шмоу и Доу и после того, как Шмоу победит, попросить выбрать между Шмоу и Эйнштейном. С другой стороны, если вы хотите победы Доу, вы должны сперва провести голосование между Шмоу и Эйнштейном, а потом между Эйнштейном и Доу. Поскольку выбор членов комиссии нетранзитивен при условии, что решает большинство, на основании парного сравнения, человек, определяющий повестку, имеет контроль над выборами.
Обратимость предпочтений
Если нетранзитивность не самое худшее, то в некоторых случаях предпочтения «обратимы» в зависимости от того, в каком порядке они были произведены. Одно из первых исследований, зафиксировавших необратимости предпочтения, было опубликовано Сарой Лихтенштейн и Полем Словиком в 1971 году. Лихтенштейн и Словик писали, что выбор между двумя лотереями может включать в себя более разнообразные психологические процессы, чем подсчет и оценка каждой из альтернатив в отдельности (т.е. установление количества долларов, как они выразились). Оба они предположили, что выбор должен в основном определяться шансами на выигрыш, тогда как оценка должна в первую очередь зависеть от суммы, которую можно выиграть или проиграть.
Они проверили эту гипотезу в трех экспериментах. В каждом опыте они сначала знакомили испытуемых с несколькими парами пари. Каждая пара имела близкие ожидаемые величины, но одна всегда имела высокую возможность выигрыша, а другая — высокую ставку (см. рис. 8.6). После того как испытуемые определяли, какое пари выбирают из каждой пары, они оценивали лотереи каждую в отдельности. Оценки собирались следующим образом: испытуемым говорили, что они стали обладателями лотерейного билета, и спрашивали, за какую минимальную сумму они бы согласились его продать. (121:)