Что такое психология - Годфруа Жо (читаем полную версию книг бесплатно .TXT) 📗
В нашем случае все это можно представить следующим образом:
χ2 = Σ
= 8,66Для расчета числа степеней свободы число строк в табл. 2 (в конце приложения Б) за вычетом единицы умножают на число столбцов за вычетом единицы. Таким образом, в нашем случае число степеней свободы равно (2–1) ∙ (2–1) = 1.
Табличное значение χ2 (см. табл. 2 в дополнении Б.5) для уровня значимости 0,05 и 1 степени свободы составляет 3,84. Поскольку вычисленное нами значение χ2 намного больше, нулевую гипотезу можно считать опровергнутой. Значит, между употреблением наркотика и глазодвигательной координацией действительно существует связь [219].
Критерий знаков (биномиальный критерий)
Критерий знаков — это еще один непараметрический метод, позволяющий легко проверить, повлияла ли независимая переменная на выполнение задания испытуемыми. При этом методе сначала подсчитывают число испытуемых, у которых результаты снизились, а затем сравнивают его с тем числом, которого можно было ожидать на основе чистой случайности (в нашем случае вероятность случайного события 1:2). Далее определяют разницу между этими двумя числами, чтобы выяснить, насколько она достоверна.
При подсчетах результаты, свидетельствующие о повышении эффективности, берут со знаком плюс, а о снижении — со знаком минус; случаи отсутствия разницы не учитывают.
Расчет ведётся по следующей формуле:
Z =
,где X — сумма «плюсов» или сумма «минусов»;
n/2 — число сдвигов в ту или в другую сторону при чистой случайности (один шанс из двух [220]);
0,5 — поправочный коэффициент, который добавляют к X, если X < n/2, или вычитают, если X > n/2.
Если мы сравним в нашем опыте результативность испытуемых до воздействия (фон) и после воздействия, то получим
Опытная группа
Итак, в 13 случаях результаты ухудшились, а в 2 — улучшились. Теперь нам остается вычислить Z для одного из этих двух значений X:
либо Z =
= = 1,83;либо Z =
= = -1,83.Из таблицы значений Z можно узнать, что Z для уровня значимости 0,05 составляет 1,64. Поскольку полученная нами величина Z оказалась выше табличной, нулевую гипотезу следует отвергнуть; значит, под действием независимой переменной глазодвигательная координация действительно ухудшилась.
Критерий знаков особенно часто используют при анализе данных, получаемых в исследованиях по парапсихологии. С помощью этого критерия легко можно сравнить, например, число так называемых телепатических или психокинетических реакций (X) (см. досье 5.1) с числом сходных реакций, которое могло быть обусловлено чистой случайностью (n/2).
Другие непараметрические критерии
Существуют и другие непараметрические критерии, позволяющие проверять гипотезы с минимальным количеством расчетов.
Критерий рангов позволяет проверить, является ли порядок следования каких-либо событий или результатов случайным, или же он связан с действием какого-то фактора, не учтенного исследователем. С помощью этого критерия можно, например, определить, случаен ли порядок чередования мужчин и женщин в очереди. В нашем опыте этот критерий позволил бы узнать, не чередуются ли плохие и хорошие результаты каждого испытуемого опытной группы после воздействия каким-то определенным образом или не приходятся ли хорошие результаты в основном на начало или конец испытаний.
При работе с этим критерием сначала выделяют такие последовательности, в которых подряд следуют значения меньше медианы, и такие, в которых подряд идут значения больше медианы. Далее по таблице распределения R (от англ. runs — последовательности) проверяют, обусловлены ли эти различные последовательности только случайностью.
При работе с порядковыми данными [221] используют такие непараметрические тесты, как тест U (Манна — Уитни) и тест T Вилкоксона. Тест U позволяет проверить, существует ли достоверная разница между двумя независимыми выборками после того, как сгруппированные данные этих выборок классифицируются и ранжируются и вычисляется сумма рангов для каждой выборки. Что же касается критерия T, то он используется для зависимых выборок и основан как на ранжировании, так и на знаке различий между каждой парой данных.
Чтобы показать применение этих критериев на примерах, потребовалось бы слишком много места. При желании читатель может подробнее ознакомиться с ними по специальным пособиям.
Корреляционный анализ
При изучении корреляций стараются установить, существует ли какая-то связь между двумя показателями в одной выборке (например, между ростом и весом детей или между уровнем IQ и школьной успеваемостью) либо между двумя различными выборками (например, при сравнении пар близнецов), и если эта связь существует, то сопровождается ли увеличение одного показателя возрастанием (положительная корреляция) или уменьшением (отрицательная корреляция) другого.
Иными словами, корреляционный анализ помогает установить, можно ли предсказывать возможные значения одного показателя, зная величину другого.
До сих пор при анализе результатов нашего опыта по изучению действия марихуаны мы сознательно игнорировали такой показатель, как время реакции. Между тем было бы интересно проверить, существует ли связь между эффективностью реакций и их быстротой. Это позволило бы, например, утверждать, что чем человек медлительнее, тем точнее и эффективнее будут его действия и наоборот.
С этой целью можно использовать два разных способа: параметрический метод расчета коэффициента Браве—Пирсона (r) и вычисление коэффициента корреляции рангов Спирмена (rs), который применяется к порядковым данным, т. е. является непараметрическим. Однако разберемся сначала в том, что такое коэффициент корреляции.
Коэффициент корреляции
Коэффициент корреляции — это величина, которая может варьировать в пределах от +1 до -1. В случае полной положительной корреляции этот коэффициент равен плюс 1, а при полной отрицательной — минус 1. На графике этому соответствует прямая линия, проходящая через точки пересечения значений каждой пары данных:
Полная положительная корреляция (r = +1)
Полная отрицательная корреляция (r = -1)