Новая наука о жизни - Шелдрейк Руперт (бесплатные серии книг TXT) 📗
Допустим, однако, в порядке дискуссии, что было бы возможно идентифицировать, какие факторы создают картину физических или химических воздействий, которые, в свою очередь, определяют картину дифференциации; предположим также, что можно определить и те способы, с помощью которых контролируются сами эти контролирующие факторы, и так далее. Тогда возникает проблема регуляции: если часть системы удалена, эта сложная последовательность физико-химических связей должна быть нарушена. Но оказывается, что каким-то образом оставшиеся части системы могут изменить свой обычный путь развития и развиваться дальше с достижением более или менее нормального конечного результата.
Обычно все согласны в том, что это проблема чрезвычайно трудная; она еще далеко не понята даже в общих чертах. Защитники механистической теории надеются, что она может быть решена с помощью большой, кропотливой работы; их оппоненты отрицают, что она может быть даже в принципе решена механистическим путем. Однако обсуждения ради можно еще раз предположить, что механистическое решение может быть найдено.
Тогда остается другая проблема — каким образом «информация о положении» вызывает свои эффекты. Простейшая возможность состоит в том, что эта информация определяется градиентом концентрации специфического (химического) реагента и что клетки под воздействием концентрации выше некоторого значения синтезируют один набор белков, а при концентрации ниже этого порога — другой. Опять-таки допустим, что этот или другие механизмы, с помощью которых эта «позиционная информация» может быть «интерпретирована», действительно могут быть выяснены. [55] Теперь, в конце этой цепи весьма оптимистических предположений, достигается ситуация, в которой разные клетки, организованные в нужном порядке, производят различные белки.
До сих пор рассматривался набор отношений один к одному: ген «включается» специфическим стимулом, ДНК транскрибируется в РНК, а РНК переводится в определенную последовательность аминокислот, в полипептидную цепь. Но здесь простая причинная цепочка приходит к концу. Каким образом полипептидные цепи свертываются в специфические трехмерные структуры белков? Как белки приводят к появлению в клетках их характерной структуры? Как клетки агрегируют с образованием тканей с характерной структурой? И так далее. Это и есть проблемы собственно морфогенеза: синтез специфических полипептидных цепей обеспечивает основу для аппарата метаболизма и структурные материалы, от которых зависит морфогенез; но что фактически определяет организацию и структуры, в которые объединяются клетки и ткани? Механистическое толкование здесь таково, что все это может быть объяснено через физические взаимодействия и что этот процесс протекает спонтанно (самопроизвольно), при условии что нужные белки находятся в нужных местах в нужное время и в нужной последовательности. На этой ключевой стадии механистическая биология явно слагает с себя полномочия и решение проблемы морфогенеза просто возлагается на физику.
Действительно, полипептидные цепи самопроизвольно свертываются, если имеются подходящие условия, в белки с характерной трехмерной структурой. Их даже можно заставить развернуться, а затем, изменив условия, снова свернуться в пробирках, так что этот процесс не зависит от какого-либо таинственного свойства живой клетки. Более того, белковые субъединицы могут агрегировать в пробирке с образованием структур, которые в норме образуются в живых клетках: например, субъединицы белка тубулина объединяются в длинные палочкообразные структуры, называемые микротрубочками. [56]
А еще более сложные структуры, такие как рибосомы, могут образоваться в результате самопроизвольной агрегации различных белков и компонентов РНК. Вещества других классов, например липиды клеточных мембран, также способны спонтанно агрегировать в пробирке.
По своей способности к самопроизвольной агрегации эти структуры напоминают кристаллы; многие из них действительно могут рассматриваться как кристаллические или квазикристаллические. Так что в принципе они представляют не большую или не меньшую проблему, чем обычная кристаллизация; можно допустить, что здесь протекают те же физические процессы.
Тем не менее все процессы морфогенеза, безусловно, нельзя рассматривать как процессы кристаллизации. Они должны включать множество других физических факторов: например, на формы, принимаемые мембранами, должны влиять силы поверхностного натяжения, а на структуры гелей и золей — коллоидные свойства их составляющих. И кроме того, некоторые формы могут возникать в результате статистически случайных флуктуации; простые примеры появления «порядка через флуктуации» начали изучать с точки зрения необратимой или неравновесной термодинамики в неорганических системах, и близкие по характеру процессы вполне могут протекать в клетках и тканях. [57] Однако механистическая теория не просто предполагает, что эти и другие физические процессы играют роль в морфогенезе; она утверждает, что морфогенез можно полностью объяснить на языке физики. Что это означает? Если что-либо наблюдаемое определяется как в принципе объяснимое физически просто потому, что оно происходит, то это должно быть так по определению. Но это необязательно означает, что оно может быть объяснено с помощью известных законов физики. В отношении биологического морфогенеза можно сказать, что это объяснение может быть достигнуто, если биолог, который знает полную последовательность оснований в ДНК организма и имеет подробное описание физико-химического состояния оплодотворенного яйца и окружающей среды, в которой оно развивалось, может предсказать, основываясь на фундаментальных законах физики (то есть квантовой теории поля, уравнениях электромагнетизма, втором законе термодинамики и т. д.), во-первых, трехмерную структуру всех белков, которые будет производить этот организм; во-вторых, ферментативные и другие свойства этих белков; в-третьих, полную картину метаболизма всего организма; в-четвертых, природу и последствия всех типов позиционной информации, которая появилась бы в процессе его развития; в-пятых, структуру его клеток, тканей и органов и форму целого организма; и наконец, для животного — его инстинктивное поведение. Если все эти предсказания могут быть успешными и если, кроме того, ход процессов регуляции и регенерации также может быть предсказан a priori, это действительно стало бы убедительной демонстрацией того, что живые организмы полностью объяснимы с помощью известных законов физики. Но, конечно, ничего подобного сегодня сделано быть не может. И нет способа продемонстрировать, что такое объяснение возможно. Его вообще может не быть.
Таким образом, если механистическая теория утверждает, что все явления морфогенеза в принципе объяснимы с помощью известных законов физики, она вполне может ошибаться: так мало понятно сейчас, что, по-видимому, нет серьезных оснований для твердого убеждения в том, что с помощью известных законов можно объяснить все явления. Но это, по крайней мере, проверяемая теория: она может быть отвергнута в результате открытия нового закона физики. С другой стороны, если бы механистическая теория утверждала, что живые организмы подчиняются как известным, так и неизвестным законам природы, тогда она была бы неопровержима; это было бы просто общим утверждением о том, что объяснение возможно. Такая теория не противостояла бы органицизму и витализму, но включала бы их.
На практике механистическая теория жизни не рассматривается как строго определенная, опровергаемая научная теория; скорее, она служит для оправдания консервативного метода работы в рамках установившегося строя мысли, предлагаемого современной физикой и химией. Хотя обычно считается, что она утверждает то, что живые организмы в принципе объяснимы через известные законы физики, если бы были открыты новые законы физики и, таким образом, они стали бы известны, механистическая теория легко могла бы быть изменена так, чтобы включить и их.