Простая одержимость. Бернхард Риман и величайшая нерешенная проблема в математике. - Семихатов Алексей
Всё вместе говорит нам следующее.
1. Риман был чрезвычайно застенчивым человеком. Он избегал человеческих контактов настолько, насколько это удавалось, и неуютно чувствовал себя в кругу других людей. Его единственные близкие привязанности — а они были и правда очень близкими — концентрировались в семье, а какие бы то ни было другие связи, если и возникали, касались математики и математиков. Когда он находился вдали от семьи, от дома отца в его приходе Квикборн, он страдал от тоски.
2. Он был очень набожным, в духе немецкого протестантизма (Риман был лютеранином). По его убеждению, суть религии, если буквально переводить с немецкого, как об этом пишет Дедекинд, заключалась в том, чтобы «ежедневно ответствовать за себя пред лицом Господа».
3. Он глубоко размышлял о философии и рассматривал свою работу в сфере математики в более широком философском контексте.
4. Он был ипохондриком, как в старом, так и в новом понимании этого слова. (Раньше оно стояло в ряду синонимов к выражению «подверженный депрессиям».) Дедекинд избегает этого слова, вероятно, из-за уважения к чувствам вдовы Римана, которая очень не хотела, чтобы ипохондрия Римана стала широко известной. Тем не менее Дедекинд ясно дает понять, что Риман был подвержен наплывам очень глубокой печали, в особенности после смерти своего отца, которого он боготворил. Способом справиться с этим для Римана было погружение в работу.
5. Он никогда не отличался хорошим здоровьем; особенно разрушительное влияние на него оказали долгие годы лишений, которым в той стране и в те времена бедному человеку приходилось подвергать себя, если он намеревался получить высшее образование.
Есть соблазн воспринимать Римана как довольно унылую личность, при этом несколько патетического склада. Но это означало бы, что мы принимаем во внимание лишь внешние черты и манеры. Под внешностью застенчивого и неуверенного в себе человека скрывался блестящий и потрясающе дерзкий ум. Сколь бы робким и вялым ни казался этот человек тем, кто эпизодически с ним встречался в обыденной жизни, в математике Риман демонстрировал бесстрашный размах и энергию, свойственные кампаниям Наполеона. Его математические друзья и коллеги, разумеется, знали об этом и относились к нему с почтением.
В связи с Риманом мне вспоминается один эпизод из романа Сомерсета Моэма «Луна и грош», основанного на жизни художника Гогена. Герой Моэма, подобно Гогену, умирает от проказы в хижине на острове в Тихом океане, куда он удалился в поисках своего видения искусства. Узнав, что тот умирает, местный доктор приходит в его хижину. Это бедная лачуга, убогая и полуразвалившаяся. Но, переступив порог, доктор в изумлении обнаруживает, что изнутри стены с пола до потолка завешаны великолепными, волшебной красоты картинами. Риман подобен той хижине: на взгляд извне он был достоин жалости; внутри же он сиял ярче солнца.
В области высшего образования реформы Вильгельма фон Гумбольдта в течение некоторого времени давали положительные результаты только в столице Пруссии Берлине. Положение в других немецких университетах оставалось таким, как оно описано у Генриха Вебера в предисловии к «Собранию трудов» Римана:
Университеты и смысл их существования воспринимались их коронованными покровителями как место для подготовки юристов и врачей, учителей и проповедников, а также место, где сыновья знати и богачей могли бы проводить время ярко и со вкусом.
И действительно, реформы фон Гумбольдта временно оказали на немецкое высшее образование негативный эффект. Они привели к повышению спроса на квалифицированных учителей старших классов, а единственным способом удовлетворить этот спрос была подготовка этих учителей в университетах. Даже великий Гаусс в 1846-1847 годах читал в Геттингенском университете в основном элементарные курсы. В поисках более серьезных возможностей Риман перевелся в Берлинский университет. Два года, проведенные в этом учреждении, где наставниками были лучшие математические умы Германии, подвели Римана к полной математической зрелости.
(Читая эту главу, как и другие исторические главы, посвященные той эпохе, следует отдавать себе отчет: до того как в Европе благодаря Наполеону — впрочем, в некоторых странах даже еще позже — произошла переоценка ценностей, существовало четкое различие между университетами, назначение которых состояло в обучении и подготовке к тому, что считалось необходимым для думающей элиты в данной стране, и научными академиями и обществами, созданными для проведения исследований. Эти же исследования в основном, с большими или меньшими вариациями в зависимости от места, времени и наклонностей правителя, были ориентированы на практическую пользу для государства. Учреждения, подобные Берлинскому университету (основанному в 1810 году), где велась некоторая исследовательская работа, или Санкт-Петербургской академии наук на раннем этапе ее существования, были редким исключением из этого общего правила. Берлинская академия наук, где Гипотезе Римана предстояло впервые увидеть свет, была чисто исследовательским учреждением, построенным по образцу Королевского общества в Англии.)
Нам не известно практически ничего о бытовой стороне жизни Римана в берлинский период, жизни за пределами его математических занятий. Дедекинд сообщает только об одном достойном упоминания инциденте. В марте 1848 года берлинская толпа, разгоряченная февральской революцией в Париже, вышла на улицы, требуя объединения германских государств в единую империю. Возводились баррикады, солдаты пытались их снести, пролилась кровь. Прусским королем в то время был Фридрих-Вильгельм IV, несколько мечтательный и отрешенный от мира человек, находившийся под сильным воздействием идей романтизма, с сентиментальными воззрениями относительно своего народа и с представлениями об идеальном государстве как о патерналистской монархии. Во время кризиса он показал свою полную несостоятельность, отправив армию назад в казармы и оставив дворец незащищенным до того, как бунтовщики были рассеяны. Студенты университета образовали верные власти караульные отряды для защиты короля, и Риман нес службу в таком карауле с 9:00 одного дня до часа следующего дня, т.е. в общей сложности 28 часов.
По возвращении в Геттинген в 1849 году Риман начал работу над диссертацией, которую он защитил через два года, в возрасте 25 лет; диссертация была посвящена теории функций комплексной переменной. Через три года после этого он начал преподавание в Геттингене, а в 1857 году получил место экстраординарного профессора, что было его первой должностью, на которой ему платили постоянное жалованье. (Обычно предполагалось, что лекторы обходятся тем, что платят за обучение студенты, — столько студентов, сколько лектору удастся привлечь на свои лекции. Должность эта называлась Privatdozent — буквально «частный преподаватель».)
Если пользоваться языком, употребительным в современных биографиях знаменитостей, то 1857 год следует также назвать «годом прорыва» Римана. Его диссертация 1851 года ныне рассматривается как классический математический труд XIX столетия, но в момент своего появления она не привлекла большого внимания, несмотря на энтузиазм, который выказал Гаусс. Другие работы, написанные Риманом в начале 1850-х годов, не получили широкой известности и были опубликованы в доступном для публики виде только после его смерти. Относительная известность, которую он вообще приобрел, пришла к нему благодаря содержанию его лекций, но и тут таилась сложность: значительная часть этого содержания слишком опережала время, чтобы ее должным образом оценили. Однако в 1857 году Риман опубликовал работу по анализу, немедленно получившую признание как существенный вклад в эту науку. Она называлась «Теория абелевых функций». [15] В ней он обратился к актуальным проблемам, применив остроумные и новаторские методы. За год или два его имя стало известно математикам по всей Европе. В 1859 году он стал ординарным профессором [16] в Геттингенском университете; эта должность наконец принесла ему достаточные средства, чтобы жениться. Женился он три года спустя на Элизе Кох, подруге своей старшей сестры.
15
Абелева функция — это многозначная функция, получаемая при обращении интегралов определенного вида. Данное название не имеет широкого распространения в наше время. Мы упомянем многозначные функции в главе 3, теорию функций комплексной переменной в главе 13, а обращение интегралов — в главе 21.
16
Используя уже утвердившийся у нас американизм — «полным профессором». В этих же терминах «экстраординарный профессор» — это Assistant Professor, что до некоторой степени соответствует российскому доценту. (Примеч. перев.)