Реникса - Китайгородский Александр Исаакович (хороший книги онлайн бесплатно .TXT) 📗
Нет числа примерам из других областей наук, которые строго логическим рассуждением выводятся из этих законов.
Механика Ньютона – величайшее завоевание человеческой мысли – вечна и непоколебима.
Почему не может быть такого положения дела, чтобы механика Ньютона оказалась неверной? Я ответил на это несколькими страницами раньше. Потому что она есть не что иное, как обобщение человеческого опыта. – А как же?..
Да, да! Всё знаю, одну минутку.
Общий закон природы, которым пользуются естествоиспытатели, сервируется всегда под некоторым соусом. Сущность закона останется неизменной, но его обрамление, толкование, подача читателю меняются с каждым десятилетием. И ньютоновская механика, которую преподают сегодня в вузе, мало похожа на механику, созданную самим Ньютоном.
В чем же неизменная сущность закона?
Она состоит в тех правилах, которые являются руководством для решения задач. Она состоит в описании и предсказании явлений, которые должны произойти в таких-то и таких-то условиях. Она состоит в указании процедур измерений некоторых величин и в описании тех графиков, которые получатся, если некий игрек откладывать в функции икса.
А обрамление?
Оно содержит ряд определений, с помощью которых сокращается разговор и предмет делается более наглядным. Скажем, траектория – это кривая, по которой движется тело. Кроме определений, имеются некоторые утверждения о свойствах пространства и времени, далеко не всегда имеющих прямое отношение к делу, и из которых не всегда понятно, что хотел сказать автор теории или ее комментатор.
Так что в обрамление входят всяческие слова и фразы, не имеющие отражения в опытных процедурах.
Отделение сущности от фестончиков далеко не всегда является простой задачей.
После смерти Ньютона прошло много времени. Родилась электродинамика. Было доказано, что световые волны являются электромагнитным излучением. Измерение скорости света стало интересной задачей, служащей для проверки электромагнитной теории света. Майкельсон ставит свои знаменитые опыты по измерению скорости света и обнаруживает неприятную деталь, нарушающую безупречность теории: скорость света в направлении движения Земли и в направлении, перпендикулярном движению Земли, оказывается одинаковой.
Это не укладывалось в существующие представления. Большинство ученых думало, что пространство абсолютно (ведь так сказано у Ньютона), а земной шар движется по отношению к эфиру. Если так, то Земля как бы догоняет луч света, посланный по движению, и убегает от луча, посланного «назад». Ясно, что такой эффект должен сказаться на скорости светового луча. А он не сказывается. Неприятность? Темное пятнышко? Или, как было сказано одним крупнейшим физиком того времени, облачко, омрачающее синее небо науки конца XIX века?
Да! Это нетерпимо, как зубная боль. И много лучших умов искало выхода из противоречия. Решение пришло в 1905 году. Так родилась теория относительности Альберта Эйнштейна – гения, равного Ньютону.
Вот здесь-то и понадобилось очистить орех от скорлупы. Признание абсолютности пространства и времени – это обрамление закона Ньютона. А сущность закона совсем не здесь, а в соотношениях между силой и ускорением, в утверждении независимости массы тела от скорости движения. Эти положения не могут быть опровергнуты; они есть обобщение человеческого опыта.
Но опыт касался тел, движущихся со скоростями, несравненно меньшими, чем скорость света. Значит, теперь мы вправе вносить в законы Ньютона любые поправки, но с одним непременным условием: при малых значениях отношения v/c – скорости тела к скорости света – новая теория должна оставить законы Ньютона в целости и сохранности. Иными словами, новая теория должна быть неким обобщением, из которого прежняя теория (незыблемое завоевание науки!) должна вытекать как частный случай.
Откинув утверждение Ньютона об абсолютности времени, объявив независимость скорости света от системы координат, в которой ведется наблюдение, законом природы, Эйнштейн формулирует теорию относительности, которая решает сразу много задач.
Во-первых, она разрубает гордиев узел противоречий, связанных с опытом Майкельсона. Во-вторых, она дает естественное объяснение возрастанию массы электрона со скоростью его движения.
Но отказ от привычного обрамления механики сопряжен с большой ломкой, и поэтому, чтобы теория завоевала признание, нужно сделать предсказания таких явлений, которые еще не наблюдались. Теория относительности выдержала такое испытание.
Из постулатов новой теории строго вытекает знаменитое уравнение взаимосвязи массы и энергии. Сущность его следующая. Если в результате какого-либо процесса система выделяет энергию, то масса системы должна уменьшиться на легко рассчитываемую величину. К сожалению, этот эффект слишком мал для химической реакции, но очень значителен при реакции атомных ядер. А такие реакции удалось осуществить в наши дни.
Окончательный триумф теории можно формально отнести к этому моменту. Но на самом деле физики «признали» ее задолго до непосредственной проверки с помощью уравнения, связывающего массу с энергией. Были проверены, в частности, некоторые астрономические следствия теории. Эти проверки плюс исключительная стройность и изящность теории и, наконец, прозрение того, что лишь ограниченность мышления и метафизические предрассудки заставляют ученых цепляться за фальшивую скорлупу, облекавшую известные до 1905 года общие законы природы, обеспечили теории относительности стопроцентное признание здравомыслящих физиков.
Таким образом, произошла настоящая революция в мировоззрении исследователей. Но смены одного закона природы другим не произошло, как это часто принято думать.
Еще раз и еще раз стоит повторить: новый закон природы не может отменить старого. Новый закон является (если он, конечно, истинно новый) обобщением, он не зачеркивает, а лишь обводит четкой линией область применимости старого закона. Открытие нового закона означает, что наука овладела такой областью, которая была ей ранее недоступна.
Новый закон – это расширение старого, но не разрушение его. Ошибочные представления связаны, вероятно, с бурными дискуссиями, не имевшими прямого отношения к науке. В этих спорах происходило назойливое противопоставление механики И. Ньютона и механики А. Эйнштейна. Это было искажением, дезориентировавшим лиц, далеких от естествознания. Спорил не А. Эйнштейн с И. Ньютоном. Спорили между собой метафизики, обсуждавшие с темпераментом, заслуживавшим лучшего применения, к каким совпадениям или противоречиям с высказываниями тех или иных философов можно прийти, если считать, что время абсолютно или время относительно.
Тонны бумаги были истрачены на то, чтобы исследовать право энергии быть связанной с массой. При этом на щитах борющихся были начертаны имена И. Ньютона и А. Эйнштейна! А корень недоразумения крылся в смешении воедино совсем разных вещей: соотношения общих законов природы, установленных Ньютоном и Эйнштейном, и сопоставления некоторых определений и модельных представлений, существовавших до 1905 года и получивших становление после этого срока.
Может быть, еще более поучительно такое же смешение в одну кучу разных вещей, происшедшее при открытии квантовой механики. Здесь события развивались следующим образом.
Когда в 1913 году Н. Бор сформулировал законы движения электрона около атомного ядра, стало очевидным, что если желаешь разобраться в атомных спектрах, то придется отказаться от мысли, что движение электрона в атоме подчиняется механике И. Ньютона. Убежденность в том, что микрочастицы ведут себя как-то по-особенному, продолжала крепнуть. События закончились созданием в середине двадцатых годов новой механики для микрочастиц, получившей название квантовой, или волновой.
Да, такая механика была действительно необходимой. Без нее можно было бы стать в тупик, так как множество обнаруженных к тому времени новых явлений не объяснялось классической механикой. Чего только стоит дифракция электронов! Электроны (их представляли частицами, тельцами), падая на кристалл, ведут себя так же, как рентгеновы лучи (а это волны). И законы И. Ньютона в этом явлении бессильны что-либо предсказывать. Что делать? Появилась мысль – отказаться от привычных представлений об электроне как частице.