Mybrary.info
mybrary.info » Книги » Научно-образовательная » Прочая научная литература » Простая одержимость. Бернхард Риман и величайшая нерешенная проблема в математике. - Семихатов Алексей

Простая одержимость. Бернхард Риман и величайшая нерешенная проблема в математике. - Семихатов Алексей

Тут можно читать бесплатно Простая одержимость. Бернхард Риман и величайшая нерешенная проблема в математике. - Семихатов Алексей. Жанр: Прочая научная литература. Так же Вы можете читать полную версию (весь текст) онлайн без регистрации и SMS на сайте mybrary.info (MYBRARY) или прочесть краткое содержание, предисловие (аннотацию), описание и ознакомиться с отзывами (комментариями) о произведении.
Перейти на страницу:

что дает в точности число 25, которое и в самом деле является числом простых чисел меньших 100. Волшебство.

А теперь повернем Золотой Ключ.

V.

Вот Золотой Ключ, первое равенство в статье Римана 1859 года, полученное нами в главе 7, когда я убеждал вас, что это просто хитрый способ переписать решето Эратосфена:

Простая одержимость. Бернхард Риман и величайшая нерешенная проблема в математике. - i_146.png

He будем забывать, что числа, появляющиеся в правой части, — это в точности все простые числа.

Возьмем логарифм от обеих частей. Если что-то равно чему-то, то, конечно, и логарифм одного должен быть равен логарифму другого. Согласно 9-му правилу действий со степенями, которое гласит, что ln(a?b) = ln а + ln b, получаем

Простая одержимость. Бернхард Риман и величайшая нерешенная проблема в математике. - i_147.png

Но, поскольку ln 1/a = ?ln a согласно 10-му правилу, это выражение равно

Простая одержимость. Бернхард Риман и величайшая нерешенная проблема в математике. - i_148.png

Теперь вспомним ряд сэра Исаака Ньютона для функции ln (1 ? x) из главы 9.vii. Он пригоден при x, лежащем от ?1 до +1, что, без сомнения, выполнено в нашем случае, поскольку s положительно. Поэтому каждый логарифм можно разложить в бесконечный ряд таким образом (19.3):

Простая одержимость. Бернхард Риман и величайшая нерешенная проблема в математике. - i_149.png

Это бесконечная сумма бесконечных сумм — с первого взгляда, я полагаю, подобное немного пугает, но в математике такие конструкции встречаются достаточно часто.

Сейчас может показаться, что мы оказались в ситуации, которая много хуже той, что была вначале. Аккуратненькое бесконечное произведение мы превратили в бесконечную сумму бесконечных сумм. Предприятие может показаться безнадежным. Да, но это если не использовать всю мощь анализа.

VI.

Возьмем какой-нибудь один из членов в этой сумме сумм. Выберем, например,

Простая одержимость. Бернхард Риман и величайшая нерешенная проблема в математике. - i_150.png
. Рассмотрим функцию x?s?1 и будем временно считать, что s — положительное число. Каков интеграл от x?s?1? В силу общих правил обращения со степенями, приведенных в главе 7.vii, это x?s/(?s), т.е. (?1/s)?(1/xs). Если мы возьмем этот интеграл при x, равном бесконечности, и вычтем из того, что получится, тот же интеграл, взятый при x равном 32,то что получится? Ну, если x — очень большое число, то (?1/s)?(1/xs) — число очень маленькое, так что справедливо будет считать, что, когда x бесконечно велико, это выражение равно нулю. И из этого — из нуля — мы собираемся вычесть (?1/s)?(1/(32)s). Такое вычитание дает (1/s)?(1/(32)s). Сухой остаток таков: выбранный член в выражении (19.3) можно переписать в виде интеграла

Простая одержимость. Бернхард Риман и величайшая нерешенная проблема в математике. - i_151.png

Но зачем мы вообще все это делаем? Чтобы вернуться к функции J, вот зачем.

Дело в том, что x = 32 — это значение, при котором функция J совершает прыжок на 1/2. В голове у математика — и уж точно в голове у великого математика, каким был Риман, — приведенное выражение

Простая одержимость. Бернхард Риман и величайшая нерешенная проблема в математике. - i_152.png
сразу вызывает некоторый образ. Этот образ представлен на рисунке 19.4: это функция J с заполненной полосой. Полоса тянется от 32 (т.е. от 9) до бесконечности и имеет высоту одна вторая. Ясно, что вся площадь под (говорим «площадь под» — думаем «интеграл») графиком функции J составлена из подобных же полосок. Полоски высотой 1, протянувшиеся от каждого простого числа до бесконечности; полоски высотой одна вторая, идущие от каждого квадрата простого числа до бесконечности; полоски высотой одна треть от каждого куба простого числа до бесконечности… Видите, как все срастается с той бесконечной суммой бесконечных сумм в выражении (19.3)?

Простая одержимость. Бернхард Риман и величайшая нерешенная проблема в математике. - i_153.png

Рисунок 19.4.

Простая одержимость. Бернхард Риман и величайшая нерешенная проблема в математике. - i_152.png
.

Конечно, площадь под графиком функции J бесконечна. Нарисованная полоска уже имеет бесконечную площадь (высота 1/2, длина бесконечна, площадь 1/2?? = ?). Таковы же площади и всех других полосок. Все вместе они складываются в бесконечность. Но что, если я пожелаю «придавить» функцию J справа таким образом, чтобы площадь под графиком стала конечной? Так, чтобы каждая из этих полосок постепенно сужалась и сжималась до такой степени, чтобы площадь ее стала конечной? Как можно было бы осуществить такое «придавливание»?

Последний интеграл подсказывает как. Предположим, что мы взяли какое-нибудь число s (которое будем считать большим единицы). Для каждого аргумента x умножим J(x) на x?s?1. Для иллюстрации возьмем s = 1,2. Тогда x?s?1 = x?2,2 или, другими словами, 1/x2,2. Возьмем аргумент x, скажем, равным 15. Вот, J(15) есть 7,333333…, а 15?2,2 равно 0,00258582…. Перемножая, получаем, что J(x)x?s?1 имеет значение 0,018962721…. Если брать большие аргументы, то сдавливание будет выражено более ярко. При x = 100 значение выражения J(x)x?s?1 равно 0,001135932….

На рисунке 19.5 показан график функции J(x)x?s?1 при s = 1,2. Чтобы подчеркнуть «эффект сдавливания», там показана та же самая полоска, которая была выделена и ранее, но теперь после сдавливания. Видно, как она все более и более худеет по мере того, как аргумент устремляется на восток. Имеется вполне реальный шанс, что вся площадь окажется конечной, несмотря на свою бесконечную длину. В предположении, что так и есть и что дело обстоит таким же образом для всех полосок, спросим себя: какова же будет полная площадь под графиком этой функции? Или, выражаясь математически, каково будет значение

Простая одержимость. Бернхард Риман и величайшая нерешенная проблема в математике. - i_154.png
?

Простая одержимость. Бернхард Риман и величайшая нерешенная проблема в математике. - i_155.png

Рисунок 19.5.

Простая одержимость. Бернхард Риман и величайшая нерешенная проблема в математике. - i_156.png
при s = 1,2.

Давайте посмотрим. Будем перебирать простые числа одно за одним. Для простого числа 2 до сдавливания имеем полоску высоты 1, идущую от 2 до бесконечности, далее полоску высоты идущую от 22 до бесконечности, затем полоску высоты идущую от 23 до бесконечности, и т.д. Сумма площадей сдавленных полосок — если мы рассматриваем пока только простое число 2 — равна (19.4):

Простая одержимость. Бернхард Риман и величайшая нерешенная проблема в математике. - i_157.png

Конечно, это пока только 2-полоски. Имеется аналогичная бесконечная сумма интегралов для 3-полосок (19.5):

Простая одержимость. Бернхард Риман и величайшая нерешенная проблема в математике. - i_158.png

И аналогичная сумма для 5, потом для 7 и т.д. для всех простых чисел. Бесконечная сумма бесконечных сумм интегралов! Все хуже и хуже! Да, но самый густой мрак перед рассветом.

Это возвращает нас к началу данного раздела. Поскольку интеграл прозрачен для умножения на число,

Простая одержимость. Бернхард Риман и величайшая нерешенная проблема в математике. - i_159.png
 — это то же самое, что
Простая одержимость. Бернхард Риман и величайшая нерешенная проблема в математике. - i_156.png
. Но в начале раздела мы видели, что член, который мы в качестве пробного выбрали в выражении (19.3), т.е.
Простая одержимость. Бернхард Риман и величайшая нерешенная проблема в математике. - i_150.png
, равен
Простая одержимость. Бернхард Риман и величайшая нерешенная проблема в математике. - i_160.png
— другими словами, s умножить на то, что мы только что получили. Так к чему же сводится выражение (19.5)? Вот именно, в точности ко второй строке в выражении (19.3), деленной на s! А выражение (19.4) плюс выражение (19.5) плюс аналогичные выражения для всех остальных простых чисел суммируются к выражению (19.3), деленному на s. Вот и рассвет! Получается, что штука, с которой я тут забавляюсь, т.е.
Простая одержимость. Бернхард Риман и величайшая нерешенная проблема в математике. - i_154.png
, равна просто выражению (19.3), деленному на s. Но выражение (19.3) равно ln ?(z), как нам подсказывает Золотой Ключ. Отсюда получается следующий результат.

вернуться
вернуться
вернуться
вернуться
вернуться
вернуться
вернуться
вернуться
вернуться
вернуться
Перейти на страницу:

Семихатов Алексей читать все книги автора по порядку

Семихатов Алексей - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки mybrary.info.


Простая одержимость. Бернхард Риман и величайшая нерешенная проблема в математике. отзывы

Отзывы читателей о книге Простая одержимость. Бернхард Риман и величайшая нерешенная проблема в математике., автор: Семихатов Алексей. Читайте комментарии и мнения людей о произведении.


Уважаемые читатели и просто посетители нашей библиотеки! Просим Вас придерживаться определенных правил при комментировании литературных произведений.

  • 1. Просьба отказаться от дискриминационных высказываний. Мы защищаем право наших читателей свободно выражать свою точку зрения. Вместе с тем мы не терпим агрессии. На сайте запрещено оставлять комментарий, который содержит унизительные высказывания или призывы к насилию по отношению к отдельным лицам или группам людей на основании их расы, этнического происхождения, вероисповедания, недееспособности, пола, возраста, статуса ветерана, касты или сексуальной ориентации.
  • 2. Просьба отказаться от оскорблений, угроз и запугиваний.
  • 3. Просьба отказаться от нецензурной лексики.
  • 4. Просьба вести себя максимально корректно как по отношению к авторам, так и по отношению к другим читателям и их комментариям.

Надеемся на Ваше понимание и благоразумие. С уважением, администратор mybrary.info.


Прокомментировать
Подтвердите что вы не робот:*