Диалоги (июль 2003 г.) - Гордон Александр (книги бесплатно без регистрации TXT) 📗
А.Г. Нечего узнавать.
П.И. Да, к сожалению, поражающие факторы современной войны, если уж вы упомянули, или те, что используют террористы, таковы, что от человека может, ну, просто ничего не остаться. Иногда, правда, всё-таки, что-то остаётся. Но говорить о признаках внешности уже не приходится. Тогда место опознания занимает экспертная идентификация человека, как принято говорить, личности, хотя, наверное, личность – это понятие больше социальное. Мы говорим об индивидуализации и идентификации человека с привлечением специальных аналитических методов. Судебно-экспертная, судебно-медицинская идентификация базируется на достижениях разных областей знания. Это традиционные методы, которые известны уже, наверное, больше века. Такие, как, скажем, отпечатки пальцев – классическая дактилоскопия. Или метод словесного портрета. Как говорят специалисты, это признаки внешности. Он тоже делается профессионально, и этим отличается от опознания. Есть ещё зубная формула. А генетическая, точнее, молекулярно-генетическая индивидуализация и идентификация – это, пожалуй, самый молодой продукт фундаментальной науки, который начал своё революционное шествие, если можно так сказать, в другой ипостаси, всего 15–17 лет назад.
А.Г. Ну, столько я понимаю. Всё-таки давайте к тому, что это такое.
П.И. Что именно? Молекулярно-генетическая индивидуализация?
А.Г. Да. Как?
П.И. Как и криминалистическая идентификация, молекулярно-генетическая индивидуализация решает задачу установления тождества или различий между объектами. Если это биологические объекты, то, значит, биологических объектов. Так вот, устанавливать тождество можно на разных уровнях, от верхнего уровня, макропризнаков, к микропризнакам.
Молекулярно-генетическая индивидуализация основана на сравнении признаков индивидуума на уровне его ДНК. То есть теоретически, на самом возможно точном и доказательном уровне. Потому что ДНК (полное химическое название этого вещества – дезоксирибонуклеиновая кислота) – это носитель наследственной информации, это форма записи наследственной информации каждого организма, поэтому теоретически ДНК каждого организма уникальна по своему составу. Речь идёт о генетическом коде, если хотите. Поэтому, если уметь прочитать эту уникальную информацию, тогда не составит труда идентифицировать или индивидуализировать того или иного индивидуума, потому что мы сможем однозначно адресовать его признаки определённому объекту, с которым мы его сравниваем или же установить их несоответствие. Поясню, что в криминалистической идентификации всегда есть объект сравнения и объект, так сказать, искомый, их ещё называют индивидуализирующим и индивидуализируемым объектами.
А.Г. Об этом чуть позже. А всё-таки, по каким признакам? Ведь известно сейчас, что код шимпанзе, по-моему, отличается от нас всего на 1 процент.
П.И. Да, всего на 1 процент.
А.Г. А на сколько же процентов отличается…
П.И. …ДНК одного индивидуума от другого? На доли процента. Десятые, а, может быть, и сотые доли процента.
А.Г. Так их же найти надо.
П.И. И это было естественным препятствием для того, чтобы методы молекулярной биологии и молекулярной генетики могли бы эффективно служить как инструмент в решении задачи идентификации человека – вплоть до середины 80-х годов. Как вы знаете, эпоха ДНК, а именно, структурно-функциональных исследований ДНК, началась в 50-х годах уже прошлого века. Так вот, проблема как раз заключалась в том, что до определённого момента молекулярные биологи и молекулярные генетики оперировали такими понятиями, как ДНК, гены на уровне видовом. То есть, это была ДНК человека, или гены мыши, или гены дрозофилы (есть такой излюбленный объект генетиков). Там до особей и индивидуумов не доходило – именно потому, что, как вы правильно сказали, уровень различий между генами у особей одного вида чрезвычайно мал. И если бы эти различия были рассредоточены равномерно по геному, то есть по всем – всем генам организма, тогда нам говорить было бы не о чем в смысле идентификации. Мы могли бы рассчитывать только на счастливый случай… Условно говоря, счастливый, когда наш искомый идентифицируемый объект, скажем, страдал бы каким-то выраженным наследственным, желательно моногенным, заболеванием.
А.Г. Например, гемофилией.
П.И. Ну, например, гемофилией или, я уж не знаю, мышечной дистрофией Дюшенна. Тогда мы бы могли, уловив этот дефектный ген, отличить данного человека от всех остальных здоровых, и с известной точностью рассуждать о том, что не так часто нам попадаются такие больные, и если уж такой попался, да ещё по каким-то косвенным признакам имеет отношение к расследуемой ситуации, то значит, наверняка, это он, разыскиваемый, и есть. Если бы вот так было, то на этом всё бы и закончилось. Но оказалось, что в природе всё не так. Оказалось, что вот эти различия, они кластеризованы, то есть они сгруппированы в каких-то областях генома. Другие же области могут на протяжении многих и многих генов, или лучше, не будем говорить «гены», а скажем «участков ДНК», оказаться одинаковыми, неразличимыми у разных индивидуумов. Так вот, нужно знать, куда посмотреть.
А.Г. Так куда посмотреть?
П.И. О, это особые гены, которые носят название полиморфных, даже гиперполиморфных или гипервариабельных генов. Они получили своё название именно потому, что они, их варианты, или как принято говорить, алельные состояния этих генов различаются у разных людей – в отличие от всех других, обычных генов, которые практически одинаковы, и только, скажем, патология какая-то может быть отличием. В последнем случае мы имеем так называемые диалельные состояния, то есть мутацию и дикий тип. Для гиперполиморфизма же характерно много равноценных вариантов одного и того же гена. Если при этом варианты различаются структурой, то, умея посмотреть эту структуру, разницу в структуре, мы сможем различить эти разные варианты и тем самым приписать тот или иной конкретный вариант тому или иному индивидууму.
А.Г. Здесь возникает вот какой вопрос. Если генетическая карта на этого индивидуума уже была составлена, тогда, конечно, вы берёте, например, биологические останки, смотрите, – о, полное совпадение, это он. Ну, а как быть в том случае, когда у вас нет такой карты? А этих случаев сейчас, наверное, сто процентов, потому что я чего-то не слышал о генетической паспортизации.
П.И. Вы берёте именно область идентификации?
А.Г. Да, да.
П.И. Потому что ведь, скажем, судебная наука решает не только этот вопрос. Например, есть ещё вопрос о принадлежности части целому. Вы знаете, бывают расчленённые тела или биологические следы, оставленные на месте преступления.
А.Г. Ну да, или пресловутое отцовство.
П.И. Там как раз сравнение прямое. Мы должны сравнить признаки в одном объекте с соответствующими признаками в другом. Вот, например, потенциальный донор пятна крови – надо сравнить: если у нас не совпадают его признаки и признаки, которые мы установили в пятне, то значит, это не тот человек, которого мы ищем. На этом, собственно, основаны традиционные классические методы судебной биологии, те же группы крови. Вот система Ландштейнера АВ0 («А»-«Б»-«ноль»). Очень хорошая система, давно применяется. Если, например, мы в пятне крови детектируем группу крови Б, а подозреваемый человек, который, как нам кажется, мог оставить это пятно, имеет группу крови А, то значит, наша следственная версия неверна. То есть, это не он.
А.Г. Но если группа крови Б?
П.И. А вот если группы совпали…
А.Г. Здесь начинается игра с вероятностью.
П.И. Да, совпадение группы крови ещё не означает, что мы нашли именно того, кто оставил след. Дело в том, что избирательность этих систем, я имею в виду традиционных биологических, серологических, в данном случае, систем очень невысока, потому что у каждого второго-третьего будет та же самая группа. Это значит, что мы сузили круг, условно говоря, подозреваемых. У нас отпали другие…