Mybrary.info
mybrary.info » Книги » Научно-образовательная » Прочая научная литература » Логика - Ивин Александр Архипович (серии книг читать бесплатно TXT) 📗

Логика - Ивин Александр Архипович (серии книг читать бесплатно TXT) 📗

Тут можно читать бесплатно Логика - Ивин Александр Архипович (серии книг читать бесплатно TXT) 📗. Жанр: Прочая научная литература. Так же Вы можете читать полную версию (весь текст) онлайн без регистрации и SMS на сайте mybrary.info (MYBRARY) или прочесть краткое содержание, предисловие (аннотацию), описание и ознакомиться с отзывами (комментариями) о произведении.
Перейти на страницу:

К примеру, нужно доказать тезис «Все металлы проводят электрический ток». Подбираем в качестве аргументов утверждения, которые являются, во-первых, истинными и из которых, во-вторых, логически вытекает тезис. В качестве таких утверждений можно принять, в частности, следующие: «Все вещества, имеющие в своей кристаллической решётке свободные электроны, проводят электрический ток» и «Все металлы имеют в своей кристаллической решётке свободные электроны». Строим умозаключение:

Все вещества, имеющие в своей кристаллической решётке свободные электроны, проводят электрический ток.

Все металлы имеют в своей кристаллической решётке свободные электроны.

Все металлы проводят электрический ток.

Данное умозаключение является правильным (оно представляет собой категорический силлогизм), посылки его истинны; значит, умозаключение является доказательством исходного тезиса.

Доказательство — это правильное умозаключение с истинными посылками. Логическую основу каждого доказательства (его схему) составляет логический закон.

Доказательство — это всегда в определённом смысле принуждение.

Философ XVII в. Т. Гоббс до сорока лет не имел представления о геометрии. Впервые в жизни прочитав формулировку теоремы Пифагора, он воскликнул: «Боже, но это невозможно!» Но затем шаг за шагом он проследил все доказательство, убедился в его правильности и смирился. Ничего другого, собственно, и не оставалось.

Мы уверены, к примеру, что важными показателями богатства нашего языка являются его индивидуальность, стилистическая гибкость, умение обо всем говорить «своими словами». В таком случае мы должны признать также, что язык обезличенный, лишённый индивидуальности, основывающийся на чужих оборотах и выражениях и потому серый, бездушный и трафаретный, не может считаться богатым и полноценным.

Источником «принудительной силы» доказательств являются логические законы мышления, лежащие в их основе. Именно данные законы, действуя независимо от воли и желаний человека, заставляют в процессе доказательства с необходимостью принимать одни утверждения вслед за другими и отбрасывать то, что несовместимо с принятым.

Задача доказательства — исчерпывающе утвердить обоснованность доказываемого тезиса.

Раз в доказательстве речь идёт о полном подтверждении, связь между аргументами и тезисом должна носить дедуктивный характер.

По своей форме доказательство — дедуктивное умозаключение или цепочка таких умозаключений, ведущих от истинных посылок к доказываемому положению.

Обычно доказательство протекает в очень сокращённой форме.

Видя чистое небо, мы заключаем: «Погода будет хорошей». Это доказательство, но до предела сжатое. Опущено общее утверждение: «Всегда, когда небо чистое, погода будет хорошей». Опущена также посылка: «Небо чистое». Оба эти утверждения очевидны, их незачем произносить вслух.

Встретив идущего по улице человека, мы отмечаем: «Обычный прохожий». За этой констатацией опять-таки стоит целое рассуждение. Но оно настолько обычное и простое, что протекает почти неосознанно.

Писатель В.В.Вересаев приводит такой отзыв одного генерала о неудачном укреплении, которое построил его предшественник: «Я узнаю моего умного предшественника. Если человек большого ума задумает сделать глупость, то сделает такую, какой все дураки не выдумают». Это рассуждение — обычное доказательство, заключение которого опущено. Наши разговоры полны доказательств, но мы их почти не замечаем.

Старая латинская пословица говорит: «Доказательства ценятся по качеству, а не по количеству». В самом деле, дедукция из истины даёт только истину. Если найдены верные аргументы и из них дедуктивно выведено доказываемое положение, доказательство состоялось, и ничего более не требуется.

Нередко в понятие доказательства вкладывается более широкий смысл: под доказательством понимается любая процедура обоснования истинности тезиса, включающая как дедукцию, так и индуктивное рассуждение, ссылки на связь доказываемого положения с фактами, наблюдениями и т.д. Расширительное истолкование доказательства является обычным в гуманитарных науках. Оно встречается и в экспериментальных, опирающихся на наблюдения рассуждениях.

Как правило, широко понимается доказательство и в обычной жизни. Для подтверждения выдвинутой идеи активно привлекаются факты, типичные в определённом отношении явления и т.п. Дедукции в этом случае, конечно, нет, речь может идти только об индукции. Но тем не менее предлагаемое обоснование нередко называют доказательством.

Широкое употребление понятия «доказательство» само по себе не ведёт к недоразумениям. Но только при одном условии. Нужно постоянно иметь в виду, что индуктивное обобщение, переход от частных фактов к общим заключениям, даёт не достоверное, а лишь вероятное знание.

Определение доказательства включает два центральных понятия логики: понятие истины и понятие логического следования. Оба эти понятия не являются в достаточной мере ясным и, значит, определяемое через них понятие доказательства также не может быть отнесено к ясным.

Многие утверждения не являются ни истинными, ни ложными, т.е. лежат вне «категории истины». Оценки, нормы, советы, декларации, клятвы, обещания и т.п. не описывают каких-то ситуаций, а указывают, какими они должны быть, в каком направлении их нужно преобразовать. От описаний требуется, чтобы они соответствовали действительности и являлись истинными. Удачный совет, приказ и т.п. характеризуется как эффективный или целесообразный, но не как истинный. Высказывание «Вода кипит» истинно, если вода действительно кипит; команда же «Вскипятите воду!» может быть целесообразной, но не имеет отношения к истине. Очевидно, что оперируя выражениями, не имеющими истинностного значения, можно и нужно быть и логичным и доказательным. Встаёт, таким образом, вопрос о существенном расширении понятия доказательства, определяемого в терминах истины. Им должны охватываться не только описания, но и утверждения типа оценок или норм. Задача переопределения доказательства пока не решена ни логикой оценок ни деонтической (нормативной) логикой. Это делает понятие доказательства не вполне ясным по своему смыслу.

Не существует, далее, единого понятия логического следования. Логических систем, претендующих на определение этого понятия, в принципе бесконечно много. Ни одно из имеющихся в современной логике определений логического закона и логического следования не свободно от критики и от того, что принято называть «парадоксами логического следования».

Образцом доказательства, которому в той или иной мере стремятся следовать во всех науках, является математическое доказательство. Долгое время считалось, что оно представляет собой ясный и бесспорный процесс. В нашем веке отношение к математическому доказательству изменилось. Сами математики разбились на группировки, каждая из которых придерживается своего истолкования доказательства. Причиной этого послужило, прежде всего изменение представления о лежащих в основе доказательства логических принципах. Исчезла уверенность в их единственности и непогрешимости. Полемика по поводу математического доказательства показала, что нет критериев доказательства, не зависящих ни от времени, ни от того, что требуется доказать, ни от тех, кто использует критерий. Математическое доказательство является парадигмой доказательства вообще, но даже в математике доказательство не является абсолютным и окончательным.

2. ПРЯМОЕ И КОСВЕННОЕ ДОКАЗАТЕЛЬСТВО

Философ А.Шопенгауэр считал математику довольно интересной наукой, но не имеющей никаких приложений, в том числе и в физике. Он даже отвергал саму технику строгих математических доказательств. Шопенгауэр называл их мышеловками и приводил в качестве примера доказательство известной теоремы Пифагора. Оно является, конечно, точным: никто не может счесть его ложным. Но оно представляет собой совершенно искусственный способ рассуждения. Каждый шаг его убедителен, однако к концу доказательства возникает чувство, что вы попали в мышеловку. Математик вынуждает вас допустить справедливость теоремы, но вы не получаете никакого реального понимания. Это все равно, как если бы вас провели через лабиринт. Вы наконец выходите из лабиринта и говорите себе: «Да, я вышел, но не знаю, как здесь очутился».

Перейти на страницу:

Ивин Александр Архипович читать все книги автора по порядку

Ивин Александр Архипович - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки mybrary.info.


Логика отзывы

Отзывы читателей о книге Логика, автор: Ивин Александр Архипович. Читайте комментарии и мнения людей о произведении.


Уважаемые читатели и просто посетители нашей библиотеки! Просим Вас придерживаться определенных правил при комментировании литературных произведений.

  • 1. Просьба отказаться от дискриминационных высказываний. Мы защищаем право наших читателей свободно выражать свою точку зрения. Вместе с тем мы не терпим агрессии. На сайте запрещено оставлять комментарий, который содержит унизительные высказывания или призывы к насилию по отношению к отдельным лицам или группам людей на основании их расы, этнического происхождения, вероисповедания, недееспособности, пола, возраста, статуса ветерана, касты или сексуальной ориентации.
  • 2. Просьба отказаться от оскорблений, угроз и запугиваний.
  • 3. Просьба отказаться от нецензурной лексики.
  • 4. Просьба вести себя максимально корректно как по отношению к авторам, так и по отношению к другим читателям и их комментариям.

Надеемся на Ваше понимание и благоразумие. С уважением, администратор mybrary.info.


Прокомментировать
Подтвердите что вы не робот:*