Простая одержимость. Бернхард Риман и величайшая нерешенная проблема в математике. - Семихатов Алексей
В главе 10.iii мы кратко упомянули причину, определявшую важность Гипотезы Римана на рубеже столетия. Основным фактором было то, что Теорема о распределении простых чисел была к этому моменту доказана. С 1896 года с математической точностью было известно, что ?(N) ~ Li(N), и всеобщее внимание было приковано к этому значку «волны» посередине. Да, по мере того как N неограниченно растет, делаясь все больше и больше, ?(N) пропорциональным образом становится все ближе и ближе к Li(N). Но какова природа этой близости? Нельзя ли указать лучшее приближение? И вообще, насколько приближенно это приближение? Каков «остаточный член»?
Когда вопрос с ТРПЧ решился и математики смогли свободно предаваться мыслям об этих «второстепенных» вещах, они обнаружили, что их взор прикован к Гипотезе Римана. В работе Бернхарда Римана 1859 года ТРПЧ не была, конечно, доказана, но та работа явственно подсказывала, что теорема эта верна, и, более того, там предлагалось выражение для остаточного члена. В это выражение входили все нетривиальные нули дзета-функции. Точное знание о том, где, собственно, находятся эти нули, стало делом неотложной важности.
Математическая суть дела будет проясняться по мере нашего продвижения вперед, но, думается, вы вовсе не удивитесь, узнав, что все эти нули — комплексные числа. В 1900 году о расположении этих нетривиальных нулей (имеется в виду расположение на комплексной плоскости) с математической точностью было известно следующее.
• Существует бесконечно много нулей дзета-функции, причем все они имеют вещественную часть, заключенную в пределах от 0 до 1 (не включая границы). Чтобы наглядно это представить, математики используют комплексную плоскость (рис. 12.1) и говорят, что все нетривиальные нули лежат в критической полосе. В Гипотезе Римана делается более сильное утверждение: что все они лежат на линии, вещественная часть которой равна одной второй — т.е. на критической прямой. «Критическая полоса» и «критическая прямая» — распространенные термины при обсуждении Гипотезы Римана, и мы отныне будем свободно ими пользоваться.
Рисунок 12.1. Критическая полоса (затемнена) и критическая прямая (показана штрихами).
Все нетривиальные нули дзета-функции лежат на критической прямой.
• Нули появляются сопряженными парами. Другими словами, если a + bi — один из нулей, то нулем является и a ? bi. Или еще по-другому, если z — один из нулей, то нулем будет и результат его комплексного сопряжения z'. Мы определили «комплексное сопряжение» и обозначения «зет-с-чертой» в главе 11.v. И еще одним способом скажем так: если имеется нуль сверху от вещественной прямой, то его зеркальное отображение снизу от вещественной прямой также будет нулем (верно, разумеется, и обратное).
• Вещественные части нулей симметричны относительно критической прямой, т.е. нуль или имеет вещественную часть, равную 1/2 (в духе Гипотезы Римана), или же представляет собой один из элементов пары с вещественными частями 1/2 + ? и 1/2 ? ? для некоторого вещественного числа ?, заключенного между 0 и 1/2, и с одинаковыми мнимыми частями. Примерами могли бы служить вещественные части 0,43 и 0,57 или же вещественные части 0,2 и 0,8. Другой способ сказать то же самое таков: если предположить, что имеется нетривиальный нуль не на критической прямой, то его зеркальный образ при отражении относительно критической прямой также должен быть нулем. Это следует из той формулы в главе 9.vi. Если одна сторона формулы равна нулю, то другая также должна равняться нулю. Не будем рассматривать целые значения буквы s (при которых другие члены в той формуле или ведут себя плохо, или обращаются в нуль); тогда эта формула сообщает, что если ?(s) равна нулю, то ?(1 ? s) также равна нулю. Тем самым, если (1/2 + ?) + it представляет собой нуль дзета-функции, то нулем является и (1/2 ? ?) ? it, а значит, в соответствии с предыдущим пунктом и результат его сопряжения (1/2 ? ?) + it.
Когда Гильберт выступал со своим докладом, сверх этого было известно немного. Риман предложил еще другую формулу с волной для приближенного числа нулей с мнимой частью между нулем и неким большим числом T (см. главу 16.iv). Однако эту формулу доказали лишь в 1905 году (сделал это фон Мангольдт). Но Гипотезу Римана не забыли совсем. Она мелькает как тема для обсуждения в математической литературе 1890-х годов, например, во французском журнале задач L'lntermediaire des Mathematiciens. Но по сути дела математики XIX века оставили задачу разбираться с великой и ужасной Гипотезой Бернхарда Римана математикам XX столетия.
XX столетие было довольно… довольно деятельным столетием. Много чего произошло во всех сферах человеческой жизни. Поэтому в ретроспективе век кажется ужасно долгим, намного дольше, чем просто полторы стандартные протяженности человеческой жизни, в общем-то и составляющие век. Но математика выступает величавой неспешной поступью, и глубокие проблемы, исследуемые современными математиками, выдают свои тайны очень медленно и неохотно. Внутри каждой конкретной математической дисциплины мир также довольно тесен, со своими героями, фольклором и устными традициями, связывающими сообщество воедино как в пространстве, так и во времени. Когда я собирал материал для этой книги, то из разговоров с ныне здравствующими математиками сделал вывод, что XX столетие не так уж далеко простерлось во времени — великие имена, связанные с его началом, находятся от нас все еще «в пределах слышимости».
Например, я пишу эти строки всего неделю спустя после разговоров с Хью Монтгомери, ключевым персонажем в достижениях (о которых будет рассказано в подходящий момент) 70-х и 80-х годов XX века. Хью закончил аспирантуру в Тринити-колледже в Кембридже в конце 1960-х. Среди сотрудников колледжа, которых он знал лично, был Джон Идензор Литлвуд (1885-1977), который в 1914 году получил один из первых значительных результатов, продвигающих вперед наше понимание Гипотезы Римана. «Он пытался убедить меня понюхать пороху с этой задачей», — рассказывает Хью, у которого до сих пор сохранились рукописные записки Литлвуда. Литлвуд теоретически мог бы встретиться и говорить о математике с другом Римана Рихардом Дедекиндом, который дожил до 1916 года, продолжая заниматься математикой практически до самого конца жизни, и который учился у Гаусса! (Мне не удалось выяснить, имела ли такая встреча место в действительности. В реальности она не очень вероятна. Дедекинд ушел на пенсию с поста профессора в Брауншвейгской политехнической школе в 1894 году, после чего, согласно Джорджу Пойа [106], «жил тихой жизнью, встречаясь лишь с очень небольшим числом людей»).
Описываемый период развития математики вызывает сильное ощущение непрерывности, из-за которого меня так и подмывает отбросить строго хронологический подход при рассказе о XX столетии. Это искушение усиливается ввиду характера достижений совершенных в течение этого столетия. История о Гипотезе Римана в XX веке состоит не из одной линии рассказа, а из нескольких нитей, иногда пересекающихся, иногда переплетающихся друг с другом. Здесь требуется маленькое предварительное объяснение; а объяснение само по себе требует предисловия — замечания о том, как математика развивалась в период с 1900 по 2000 год.
106
Джордж Пойа: 1887-1985. Вглядитесь в эти даты — еще один «бессмертный». Пойа был венгром. Еще более удивительным, чем подъем немецкой математики в начале XIX столетия, был подъем венгерской в начале XX. Тогда как немецкие государства (не считая Австрии и Швейцарии) в 1800 г. насчитывали около 24 миллионов жителей, говорящее по-венгерски население Венгрии составляло в 1900 г. около 8,7 миллиона и, как мне кажется, так и не перешло через 10-миллионный рубеж. К этой небольшой и неприметной нации относится потрясающая доля первоклассных математиков мирового уровня: Боллобаш, два Кенигса, Керекярто, Кюрчхак, Лакатош, Радо, Реньи, два Риса, Сас, Сеге, Секефальви-Надь, Туран, Фейер, Хаар, Эрдейи, Эрдеш, фон Нейман — и, наверное, еще нескольких я забыл. На объяснение этого феномена были направлены кое-какие литературные попытки. Сам Пойа считал, что ключевым фактором являлся Фейер (1880–1959), вдохновенный наставник и способный администратор, который привлекал и поощрял математические таланты. Значительная часть великих венгерских математиков (включая Фейера) были евреями — или же, как в случае родителей Пойа, «социально» обращенными в христианство, но исходно еврейского происхождения. (В отечественной литературе более известен венгерский вариант написания имени математика: Дьердь Пойа. — Примеч. перев.)