Открытие мира (Издание второе, переработанное и дополненное) - Ляпунов Борис Валерианович (читать хорошую книгу полностью .txt) 📗
Как же облегчить тяжелую участь пассажира ракеты?
Весь опыт скоростной авиации говорит о том, что это сделать можно. Авиационные врачи наблюдали воздействие больших ускорений на летчика при разном положении тела — стоя, сидя, лежа. Оказалось, что, откинувшись в кресле, пилот гораздо легче переносит болезненные явления, описанные нами, и быстрее приходит в себя после них. Вот почему конструкторы предусматривают для скоростных самолетов сиденье со спинкой, наклон которой можно изменять. Есть и специальные противоперегрузочные костюмы для летчиков.
Если к этому добавить еще систематическую тренировку и спортивную подготовку пилотов, станет ясно, что ускорение не такой страшный враг, как могло показаться с первого взгляда.
Советские авиаторы отлично владеют техникой больших скоростей. Они первыми в мире исполнили фигуры высшего пилотажа на реактивных самолетах.
Не оправдались пессимистические предсказания некоторых ученых, говоривших когда-то, на заре эпохи скоростной авиации, что человек не перенесет больших ускорений, с которыми ему неизбежно придется столкнуться.
Взгляните в небо! Ослепительный каскад фигур делает истребитель, ведомый закаленным, тренированным советским летчиком. За самолетом трудно уследить — так быстро совершается воздушный «танец». Перегрузка велика, но пилоту она не опасна. Конструктор и врач позаботились об этом. Когда на экране мы следим за воздушным парадом, кинооператор показывает нам летчика во время выполнения фигур высшего пилотажа. И что же? Лицо его сосредоточенно, спокойно и совсем не напоминает страшную маску человека, придавленного тяжестью. Значит, можно без вреда для организма летать быстрее звука, — не только машина, но и человек выдерживает такой полет.
Однако не надо и преуменьшать трудности. С ними еще придется серьезно бороться. Межпланетным полетам да и ракетным перелетам в стратосфере — космическим рейсам в миниатюре — должна предшествовать большая исследовательская работа.
Многое здесь зависит от авиационной медицины. Центробежная сила создаст искусственную тяжесть любой нужной нам величины. Камера, укрепленная на длинном стержне и вращающаяся подобно карусели, заменит в опытах кабину ракеты во время подъема. Как некогда первые стратонавты в высотной камере репетировали полет, переживая то, что им предстояло перенести в отрезанной от мира гондоле стратостата, так и будущие межпланетные путешественники еще на земле испытают все ощущения предстоящего перелета.
Пассажиров ракеты поместят в специально оборудованные кресла с откидными спинками. Автоматические устройства ракетных двигателей ограничат наибольшее ускорение ракеты пределом, безопасным для человека. В случае же, если пилот потеряет сознание, ракета будет управляться автоматически.
Циолковский предложил одеть путешественников в особые костюмы: погруженные в жидкость футляры по форме тела с приспособлениями для свободного дыхания. «Природа… — говорил он, — не пренебрегает свойством жидкости уничтожать разрушительное действие относительной тяжести и потому заботливо погружает все нежные органы животного в особые жидкости, налитые в крепкие естественные сосуды». Таковы мозг в черепе или зародыш в яйце.
Циолковский думал, что можно будет, например, поместить пассажиров в предохранительные масляные ванны.
Однако плотность разных органов человеческого тела неодинакова, плотность же жидкости одна и та же. А ведь только жидкость той же плотности, что и тело, обладает свойством предохранять от вредного действия увеличенной тяжести.
В таком виде идея не пригодна. Современная техника предлагает другой ее вариант.
В наклонном положении летчику легче потому, что тяжесть распределяется более равномерно, на большую площадь. Если одеть его в костюм из прорезиненной ткани, надутый воздухом, площадь соприкосновения тела с опорой сильно увеличится. Действие ускорения будет ослаблено и нанесет меньший вред. Подобные костюмы существуют, они успешно выполняют свою задачу, их применяют в авиации, будут применять и в заатмосферном транспорте.
Остается сказать несколько слов о действии ускорения на приборы и механизмы. Здесь дело обстоит проще. Радиолокационный взрыватель артиллерийского снаряда выдерживает при выстреле ускорение, в двадцать тысяч раз превышающее земное. [3] Полупроводникам не страшны перегрузки. Большие ускорения для приборов не угроза. Они «выносливее» человека. Со временем, вероятно, научатся отправлять грузы в межпланетное пространство в снарядах, выстреливаемых из электромагнитных соленоидных пушек. Так можно будет наладить «грузовое» движение между Землей и ракетой-спутником.
Опыт современной техники показывает, что и людей можно будет защитить от перегрузки. Усиленная тяжесть не будет препятствием на пути в космос.
ТЯЖЕСТЬ ИСЧЕЗЛА
…Ракета в полете. Двигатель ее кончил работать — и тяжесть исчезла. Дальше начинается сон, сказка. Достаточно слегка оттолкнуться, чтобы взлететь к потолку каюты. Потолок, впрочем, перестал быть потолком: в мире без тяжести нет «верха» и «низа». Оттолкнувшись (по привычке скажем все-таки — от потолка), вы устремляетесь вниз, к бывшему полу. Вы летаете в любом направлении — здесь действительно нет никаких преград вашему полету.
Трудно передать словами то, что будет твориться в кабине космического корабля. Ведь этого еще никто не испытал!
Советские кинематографисты в научно-фантастических фильмах «Космический рейс» и «Дорога к звездам» попытались показать мир без тяжести.
На экране видно, как отправляется в лунный перелет первая ракета с людьми. Вот она уже за атмосферой. Поднялись шторы иллюминаторов, открыв звездное небо. Переглядываются первые межпланетные путешественники, жмутся к стенкам каюты. Один, решившись, прыгает… и плавно взлетает в воздух. Вот он уже у другой стены, смеясь, зовет остальных.
Каких трудов стоило все это показать на экране! Артисты «летали», привязанные ремнями к тросам. Сложные кинотрюки создавали впечатление настоящего полета.
Надо думать, что скоро люди познакомятся с невесомостью уже не в кино, а в жизни. Скоро — потому что наше поколение, очевидно, будет свидетелем заатмосферных путешествий.
Вернемся мысленно теперь в кабину космического корабля, к началу нашего рассказа. Пока корабль поднимался с работающим двигателем, двигался ускоренно, пассажирам казалось, будто они стали в несколько раз тяжелее. Когда же скорость достигнет примерно восьми километров в секунду (двадцать девять тысяч километров в час), ракета превратится в спутник Земли, крошечную искусственную луну, и полетит с постоянной скоростью. При этом земное притяжение уравновесится развивающейся центробежной силой. Результатом единоборства ракеты с притяжением планеты будет ничья: Земля притягивает корабль, и он упал бы… если бы с точно такой же силой не стремился уйти от нее. Тогда на спутнике Земли появляется сказочный мир невесомости.
Но подождите, возразят нам, а как же обстоит дело на уже существующем спутнике, созданном природой, на Луне? Она ведь тоже вращается вокруг своей планеты. Однако тяжесть на ней есть, хотя и меньше, чем на Земле. Человек, правда, потерял бы там пять шестых своего веса, почувствовал бы себя вшестеро легче. Он побил бы все мировые рекорды по прыжкам в высоту, подъему тяжести, прыжкам в длину. И все же невесомым он не стал бы. Почему же невесомость — привилегия только искусственного спутника?
Тут надо оговориться, что, рассуждая строго, полной потери веса не будет и на искусственной луне. Закон всемирного тяготения господствует всюду во вселенной, все тела взаимно притягиваются друг к другу — и тем сильнее, чем больше их массы. У Луны масса меньше, чем у Земли, но все же достаточно велика, и сила тяжести проявляет себя довольно ощутимо. Ракетный корабль — крошка по сравнению с Луной, и «собственная» сила тяжести на нем ничтожна. Она не заявит о себе сколько-нибудь заметным образом. Практически все предметы на искусственном спутнике будут невесомы.