Новая наука о жизни - Шелдрейк Руперт (бесплатные серии книг TXT) 📗
Из этой гипотезы может быть выведено множество проверяемых предсказаний, которые разительно отличаются от предсказаний привычной механистической теории. Достаточно будет одного примера: если какое-нибудь животное, скажем крыса, обучается новому способу поведения, то у других подобных крыс (той же породы, выращенных в тех же условиях и т. д.) будет наблюдаться тенденция к более быстрой обучаемости этому способу поведения. Чем больше число крыс, научившихся выполнять новое задание, тем легче будет научиться его выполнять любой следующей крысе. Так, например, если тысячи крыс научились выполнять новое задание в Лондоне, подобные же крысы должны быстрее научиться выполнять это задание в любой другой лаборатории где-либо еще. Если бы скорость обучения крыс в другой лаборатории, скажем в Нью-Йорке, определялась до и после обучения крыс в Лондоне, крысы, испытываемые во втором случае, должны были бы обучаться быстрее, чем те, которые обучались первыми. Этот эффект должен иметь место в отсутствие какого-либо известного способа физической связи или сообщения между двумя лабораториями.
Такое предсказание может показаться настолько невероятным, что его можно счесть абсурдным. И тем не менее примечательно, что уже есть результаты лабораторных исследований на крысах, свидетельствующие о том, что предсказанный эффект действительно существует. [13]
Эта гипотеза, названная гипотезой формативной причинности, предлагает интерпретации многих физических и биологических феноменов, радикально отличающиеся от интерпретаций существующих теорий, и позволяет увидеть в новом свете множество хорошо известных проблем. В настоящей книге дано предварительное изложение этой гипотезы; обсуждаются также некоторые ее приложения и различные способы проверки. [14]
Глава 1. Нерешенные проблемы биологии
1.1. Предпосылки успеха
Цель механистического подхода в биологическом исследовании особенно ясно была выражена более ста лет назад Томасом Хаксли в следующем определении:
«Зоологическая физиология — это доктрина функций или действий животных. Она рассматривает тела животных как машины, побуждаемые к действию различными силами и совершающие некоторое количество работы, которую можно выразить на языке обычных сил природы. Конечная цель физиологии состоит в том, чтобы вывести факты морфологии, с одной стороны, и факты экологические — с другой из законов молекулярных сил вещества». [15]
Такие идеи прослеживаются во всем последующем развитии физиологии, биохимии, биофизики, генетики и молекулярной биологии. Эти науки во многих отношениях достигли блестящих успехов, и более всех молекулярная биология. Открытие структуры ДНК, разгадка генетического кода и выяснение механизма синтеза белка стали впечатляющими подтверждениями применимости механистического подхода.
Наиболее ярко выраженными и влиятельными из современных сторонников механистической теории являются молекулярные биологи. Их изложение теории обычно начинается с краткого отстранения от дел виталистических [16] и организмических теорий. Они объявляются пережитками примитивных верований, которые обречены отступать все дальше и дальше, по мере продвижения механистической биологии. Затем рассуждения строятся следующим образом. [17]
Химическая природа генетического материала, ДНК, теперь известна, и известен также генетический код, определяющий последовательность аминокислот в белках. Механизм синтеза белка уже понят достаточно глубоко. Сейчас раскрыта структура многих белков. Все ферменты — белки, а ферменты катализируют сложные цепи и циклы биохимических реакций, которые образуют метаболизм организма. Метаболизм контролируется биохимической обратной связью; известно несколько механизмов, которые могут регулировать скорость ферментативных реакций. Белки и нуклеиновые кислоты самопроизвольно агрегируют с образованием таких структур, как вирусы и рибосомы. Если набор свойств белков, а также свойств других физико-химических систем, таких как липидные мембраны, станет известен, свойства живых клеток могут быть в принципе полностью объяснены.
Ключом к решению проблем дифференциации и развития, о которых пока известно очень мало, является понимание механизма контроля синтеза белка. Способ контроля синтеза некоторых метаболических ферментов и других белков в деталях установлен для бактерии Escherichia coli. В высших организмах контроль синтеза белка осуществляется с помощью более сложных механизмов, но они скоро будут раскрыты. Таким образом, дифференциация и развитие должны быть объяснимы с помощью серий химически управляемых «переключателей», которые «включают» и «выключают» гены или группы генов.
Способ приспособления частей живых организмов к функциям целого, а также явная целенаправленность структуры и поведения живых организмов могут быть объяснены случайными генетическими мутациями, за которыми следует естественный отбор; при этом отбираются гены, увеличивающие способность организма выживать и воспроизводить; вредные мутации исключаются. Так неодарвинистская теория эволюции может объяснить целенаправленность; совершенно необязательно предполагать, что здесь участвуют какие-либо таинственные «витальные факторы». Очень мало известно о функционировании центральной нервной системы, но со временем, благодаря успехам биохимии, биофизики и электрофизиологии, станет возможным объяснить то, что мы называем разумом, на языке механизмов физико-химических процессов в мозге. Таким образом, живые организмы в принципе полностью объяснимы в терминах физики и химии. То, что мы сегодня не понимаем в механизмах развития и в деятельности центральной нервной системы, является следствием невероятной сложности этих проблем; но теперь, вооруженные новыми мощными концепциями молекулярной биологии и компьютерными моделями, мы можем взяться за решение этих задач в таких масштабах и такими способами, которые раньше были недоступны.
В свете прошлых успехов вполне понятны оптимизм и уверенность в том, что все проблемы биологии могут быть до конца решены с позиций механистического подхода. Но реалистическая оценка перспектив механистического объяснения должна опираться на нечто более серьезное, нежели историческая экстраполяция; такая оценка может быть сформирована только после рассмотрения важнейших проблем биологии и способов, которыми они предположительно могут быть решены.
1.2. Проблемы морфогенеза
Биологический морфогенез можно определить как «появление характерной и специфической формы в живых организмах». [18] Первая проблема есть именно та, что форма обретает существование. Биологическое развитие эпигенетическое: появляются новые структуры, которые не могут быть объяснены как результат развертывания или роста структур, которые уже присутствуют в яйце в начале развития.
Вторая проблема состоит в том, что многие развивающиеся системы способны регулировать, другими словами, если часть развивающейся системы удаляется (или если добавляется дополнительная часть), система продолжает развиваться таким образом, что образуется более или менее нормальная структура. Классическая демонстрация этого явления была проведена в 1890-е годы Г. Дришем в его экспериментах на эмбрионах морского ежа. Когда одну из клеток очень молодого эмбриона на двухклеточной стадии развития убивали, из оставшейся клетки развивалась не половина морского ежа, но совершенно целый морской еж, хотя и меньшего размера. Точно так же маленькие, но целые организмы развивались после разрушения любых одной, двух или трех клеток эмбриона на четырех-клеточной стадии. Напротив, после слияния двух молодых эмбрионов морского ежа развивался один гигантский морской еж. [19]