Медицинская экология - Иванова Наталья Владимировна (читать книги онлайн бесплатно полные версии txt) 📗
В биоритме всегда присутствуют две компоненты – экзогенная и эндогенная. Экзогенная компонента биоритма – это воздействие на организм любого внешнего фактора, эндогенная – обусловлена ритмическими процессами внутри организма. Эндогенный ритм непосредственно определяется генетической программой организма, которая реализуется через нервный и гуморальный механизмы.
Биоритмы имеют внутреннюю и внешнюю регуляцию.
Внутренняя регуляция биоритмов определяется функционированием так называемых биологических часов. Для объяснения эндогенных механизмов биологических часов предложено несколько гипотез.
1. «Хрононгипотеза» – была сформулирована К. Д. Ере и Е. А. Тракко. Согласно этой гипотезе механизм околосуточных ритмов связан с наследственным аппаратом клетки, в частности с определенными участками дезоксирибонуклеиновой кислоты (ДНК).
2. «Мембранная теория». Согласно данной теории цикличность наблюдаемых процессов регулируется состоянием липидно-белковых мембран и их проницаемостью для ионов калия, которая периодически изменяется. Мембранные структуры клетки, обладая рецепторными свойствами, контролируют биоритмы, связанные с фотопериодизмом и действием температурных факторов.
3. «Мультиосцилляторная модель». Считается, что в организме существуют собственные биологические осцилляторы (пейсмекеры) и наблюдаемые периоды ритмов отражают работу биологических. Источником такой активности является энергия метаболизма. Биологических часов в организме много (к настоящему времени у человека обнаружено более 300, ритмически меняющихся с периодом около 24 ч физиологических функций).
В настоящее время общепризнано, что циркадианная система организма строится по мультиосцилляторному принципу, согласно которому автономные генераторы суточных ритмов объединяются в несколько групп сцепленных осцилляторов, относительно независимых друг от друга, но имеющих иерархическую соподчиненность и синхронизированных по фазе и периоду. Что касается механизма биологических часов, то уже не вызывает сомнения сам факт наличия клеточных пейсмекеров (генераторов ритма), способных генерировать автоколебания с околосуточным периодом (Гора Е. П., 1999).
Мультиосциллярный принцип организации повышает адаптивную пластичность организма, позволяя эффективно приспосабливаться к различным по временной организации условиям среды.
Согласно исследованиям Комарова Ф. И., (1989) в организме осцилляторы одного иерархического уровня функционируют параллельно, а разных уровней – последовательно (рис. 3).
Внутренняя регуляция биоритмов. Согласно современным представлениям, в организме действуют биологические часы трех уровней (Билибин Д. П., Фролов В. А., 2007).
Первый уровень связан с деятельностью эпифиза. Современные исследования показывают, что биологические ритмы находятся в строгой иерархической подчиненности основному водителю ритмов, расположенному в супрахиазматических ядрах гипоталамуса (СХЯ). Гормоном, доносящим информацию о ритмах, генерируемых СХЯ, до органов и тканей, является мелатонин (по химической структуре – индол), преимущественно продуцируемый эпифизом из триптофана. Мелатонин также продуцируется сетчаткой, цилиарным телом глаза, органами ЖКТ. Активация регуляторной деятельности эпифиза относительно биоритмов «запускается» сменой дня и ночи (входным «рецептором» являются, в том числе, и глаза, хотя и не только они).
Рис. 3. Принцип взаимодействия осцилляторов:
I, II – природные синхронизаторы, внешние по отношению к организму; 11–23 – внутренние осцилляторы организма; первая фаза индекса – иерархический уровень, вторая – номер осциллятора на иерархическом уровне.
Толщина стрелок отражает силу влияния
Ритм продукции мелатонина эпифизом носит циркадианный характер и определяется СХЯ, импульсы из которого регулируют активность норадренергических нейронов верхних шейных ганглиев, чьи отростки достигают пинеалоцитов. Мелатонин является мессенджером не только основного эндогенного ритма, генерируемого СХЯ и синхронизирующего все остальные биологические ритмы организма, но также и корректором этого эндогенного ритма относительно ритмов окружающей среды. Следовательно, любые изменения его продукции, выходящие за рамки нормальных физиологических колебаний, способны привести к рассогласованию как собственно биологических ритмов организма между собой (внутренний десинхроноз), так и ритмов организма с ритмами окружающей среды (внешний десинхроноз).
Второй уровень биологических часов связан с супраоптической частью гипоталамуса, который с помощью так называемого субкомиссурального тела имеет связи с эпифизом. Через эту связь (а может быть, и гуморальным путем) гипоталамус получает «команды» от эпифиза и регулирует биоритмы далее. В эксперименте было показано, что разрушение супраоптической части гипоталамуса ведет к нарушению биоритмов.
Третий уровень биологических часов лежит на уровне клеточных и субклеточных мембран. По-видимому, какие-то участки мембран обладают хронорегуляторным действием. Об этом косвенно свидетельствуют факты о влиянии электрических и магнитных полей на мембраны, а через них и на биоритмы.
Таким образом, координирующую роль в синхронизации ритмов всех клеток многоклеточного организма играет гипоталамо-гипофизарная система (Билибин Д. П., Фролов В. А., 2007).
Внешняя регуляция биоритмов связана с вращением Земли вокруг своей оси, движением ее по околосолнечной орбите, с солнечной активностью, изменениями магнитного поля Земли и рядом других геофизических и космических факторов, причем среди экзогенных факторов, выполняющих функцию «датчиков времени», наиболее значимы свет, температура и периодически повторяющиеся социальные факторы (режим труда, отдыха, питания). Атмосферное давление и геомагнитное поле как датчики времени играют меньшую роль. Таким образом, у человека выделяется две группы внешних синхронизаторов – геофизические и социальные (Билибин Д. П., Фролов В. А., 2007).
Ярким примером формирования эндогенных ритмов под влиянием синхронизаторов внешней среды является влияние на новорожденного ребенка с его эндогенными ритмами таких синхронизаторов, как звук, свет, пища и т. д., а по мере развития ребенка усиливается роль социальных факторов. Сравнительно быстро у ребенка формируется суточный ритм физиологических процессов. Известный хронопедиатр Т. Хельбрюгге установил, что первые признаки суточной периодики выделения с мочой натрия и калия отмечаются на 4—20-й неделе, а креатинина и хлоридов – на 16–22-м месяце после рождения. На 2—3-й неделе происходит начало синхронизации с ритмом дня и ночи на протяжении суток такого показателя, как температура тела, а частота пульса – на 4—20-й неделе жизни ребенка.
Рис. 4. Характеристика синусоиды (биоритма):
1 – акрофаза – наивысшая точка волны; 2 – период биоритма – интервал между вершинами волн; 3 – амплитуда – наибольшее отклонение сигнала от мезора; 4 – мезор – среднее значение сигнала (делит волну биоритма пополам); 5 – артофаза (надир, батифаза) – низшая точка волны; 6 – частота – это количество циклов, совершающихся в единицу времени
Биоритмы в той или иной форме присущи всем живым организмам. В основе всякой ритмики лежит периодический волновой процесс. Простейшая кривая, описывающая биоритм, – синусоида.
Для характеристики волнового процесса используют целый ряд показателей: период, мезор (уровень), амплитуда, фаза (акрофаза, ортофаза), частота (рис. 4).
Выделяют четыре варианта изменений биоритмов: