Военная токсикология, радиобиология и медицинская защита. Учебное пособие. - Петренко Эдуард Петрович (серии книг читать бесплатно txt) 📗
Занятие 9:
«Острые радиационные поражения»
Ядерное оружие является главным и самым мощным средством массового поражения в современном бою. Оно обладает не только огромной разрушительной силой, но и способностью поражать личный состав возникающей при взрыве проникающей радиацией. Это приводит к появлению пораженных с различными формами лучевой болезни.
Острая лучевая болезнь (ОЛБ) – общее заболевание организма, вызванное кратковременным или фракционированным облучением всего организма или большей его части ионизирующим излучением значительной мощности.
При действии войск в зонах радиоактивного загрязнения – на следе радиоактивного облака радиационные поражения составят значительную часть санитарных потерь.
При применении боеприпасов среднего калибра санитарные потери от радиационных поражений могут составлять 10-15% от всех пораженных, а малых и сверхмалых калибров, нейтронных боеприпасов этот процент может возрасти до 80% и более. Источником облучения личного состава войск ионизирующими излучениями могут являться и аварии на ядерных реакторах с выбросом в атмосферу больших количеств радиоактивных веществ.
Роль и значение военно-медицинской службы в этих условиях неизменно возрастут.
Военный врач в современных условиях должен хорошо знать поражающее действие радиационных факторов ядерного взрыва и радионуклидов, при разрушении ядерных энергетических установок, на личный состав, понимать сущность возникающих патологических процессов в организме и уметь распознавать их. Эти знания должны послужить основой в практической деятельности врача при организации и проведении им профилактических и лечебно-эвакуационных мероприятий среди личного состава.
В настоящее время следует считать установленным, что лучевая патология развивается в результате первичных и вторичных механизмов поражения клеток и тканей организма.
Первичные механизмы действия ионизирующих излучений (ИИ) реализуется двумя путями: прямым и непрямым.
При прямом действии происходит поглощение энергии непосредственно веществом биосубстрата с ионизацией или возбуждением его атомов. Эффект ионизации сводится к потере атомами биомолекул одного или нескольких электронов. Возбужденное состояние характеризуется переходом электронов на более высокий энергетический уровень, в результате чего такие атомы пребывают в неустойчивом состоянии и легко диссоциируют с образованием свободных радикалов. Все эти изменения могут привести к разрыву связей, окислению химических групп и образованию «сшивок» между молекулами биосубстрата, в результате чего нарушается его биологическая активность.
Непрямое (косвенное или опосредованное) действие ИИ предполагает первоначальное образование химически активных агентов, способных передавать энергию ИИ молекулам биосубстрата. При воздействии первичных реагентов на молекулы воды и липиды могут образовываться перекисные радикалы и продукты радиационного окисления липидов, способные вызывать повреждения молекул.
Доля повреждающего эффекта за счет прямого и косвенного действия ИИ в различных тканях, клетках и даже субклеточных образованиях неодинакова поскольку содержание воды в различных структурах может быть неодинаковым. В «плотноупакованных « структурах, практически не содержащих воду (например, таких, как хромосомы), будет преобладать прямой механизм повреждающего действия ИИ. В растворах и высокогидратированных системах ведущая роль принадлежит косвенному действию. На долю прямого действия может приходится от 30 до 60% поражающего эффекта излучений.
При облучении высокими дозами ИИ, первичные механизмы вызывают структурные нарушения в любых биомолекулах. В случае облучения в относительно невысоких дозах, но способных вызывать развитие ОЛБ у человека, в первую очередь повреждаются нуклеиновые кислоты, белки, липопротеиды, полимерные соединения углеводов. В первые часы и сутки после облучения эти изменения наиболее выражены в высокорадиопоражаемых клетках и тканях, таких как: лимфоидная, миелоидная, герментативный, кишечный,и покровный эпителий, секреторные клетки пищеварительных желез и эндокринных органов. В дальнейшем, с подключением вторичных механизмов поражаются соединительная, хрящевая, костная и нервная ткани.
Глубокие структурно-метаболические нарушения в тканях, вызванные первичными механизмами ИИ, приводят к накоплению перекисей, разрушению лизосом, что вызывает активацию и освобождение гидролитических ферментов, активируется протеолиз, фенолиз, липолиз, усиливаются окислительные процессы, что ведет к выработке вторичных радиотоксинов – белковой природы, вторичных липидных радиотоксинов, гистамина и др.
В крови возрастает количество токсических веществ, что формирует лучевой токсический эффект.
Радиопоражаемость тканей описана французскими учеными Бергонье и Трибондо в 1906г. . Закон гласит – радиопоражаемость тканей определяется степенью дифференцировки клеток и их митотической активностью. При этом чем менее дифференцирована клетка (стволовая) и чем выше ее митотическая активность, тем выше ее радиопоражаемость. И наоборот – чем более дифференцирована клетка и меньше ее митотическая активность, тем более клетка радиорезистентна (лимфоидная ткань ? нервная ткань).
Важную роль в поражающем действии ИИ играет кислород, вернее так называемый «кислородный эффект». Под его влиянием повышается поражение макромалекул и биологических систем при их облучении. Это происходит вследствие взаимодействия кислорода с радикалами биомолекул с последующим образованием новых перекисных радикалов, которые вызывают поражение тканей относящиеся к числу необратимых структурных изменений.
Итак, подводя итог современных взглядов на механизм биологического действия ИИ мы можем как бы поэтапно просмотреть как в облученной клетке развиваются структурно-метаболические процессы. Первоначально происходит дискретное поглощение биосубстратом энергии ИИ и возникновение в клетке возбужденных, ионизированных молекул и свободных радикалов, обладающих высокой окисляющей способностью. Второй этап характеризуется развитием радиационно-химических реакций, в которых участвуют не только первичные свободные радикалы, но и вновь образующиеся, и более стойкие биологически активные продукты окисления. На третьем этапе ведущая роль принадлежит биохимическим процессам: ингибированию биосинтеза ДНК, активации реакций ферментативного окисления и патологического разрушения биосубстрата, образованию вторичных радиотоксинов перекисной, хиноидной и другой природы. На четвертом этапе включаются с одной стороны реакции усиливающие повреждение генома, а с другой – механизмы, обеспечивающие репарацию его дефектов. Соотношения этих процессов в конечном итоге и определяет характер структурных изменений в клетке и судьбу ее в целом. Если процессы репарации не обеспеыивают восстановление дефектов, развивается радиационное поражение (образование аббераций, некроз и лизис ядер, интерфазная и репродуктивная гибель клеток).