Гистология. Полный курс за 3 дня - Селезнева Т. Д. (электронные книги бесплатно txt) 📗
Органеллы
Органеллы – постоянные структурные элементы цитоплазмы клетки, имеющие специфическое строение и выполняющие определенные функции.
Классификация органелл:
1) общие органеллы, присущие всем клеткам и обеспечивающие различные стороны жизнедеятельности клетки;
2) специальные органеллы, имеющиеся в цитоплазме только определенных клеток и выполняющие специфические функции этих клеток.
В свою очередь, общие органеллы подразделяются на мембранные и немембранные.
Специальные органеллы подразделяются на:
1) цитоплазматические (миофибриллы, нейрофибриллы, тонофибриллы);
2) органеллы клеточной поверхности (реснички, жгутики).
К мембранным органеллам относятся:
1) митохондрии;
2) эндоплазматическая сеть;
3) пластинчатый комплекс;
4) лизосомы;
5) пероксисомы.
К немембранным органеллам относятся:
1) рибосомы;
2) клеточный центр;
3) микротрубочки;
4) микрофибриллы;
5) микрофиламенты.
Принцип строения мембранных органелл
Мембранные органеллы представляют собой замкнутые и изолированные участки (компартменты) в гиалоплазме, имеющие свою внутреннюю структуру. Стенка их состоит из билипидной мембраны и белков подобно плазмолемме. Однако билипидные мембраны органелл имеют особенности: толщина билипидных мембран органелл меньше, чем плазмолеммы (7 нм против 10 нм), мембранные отличаются по количеству и по содержанию белков, встроенных в них.
Однако, несмотря на различия, мембраны органелл имеют одинаковый принцип строения, поэтому они обладают способностью взаимодействовать друг с другом, встраиваться, сливаться, разъединяться, отшнуровываться.
Общий принцип строения мембран органелл можно объяснить тем, что все они образуются в эндоплазматической сети, а затем происходит их функциональная перестройка в комплексе Гольджи.
Митохондрии
Митохондрии – наиболее обособленные структурные элементы цитоплазмы клетки, обладающие в значительной степени самостоятельной жизнедеятельностью.
Существует мнение, что в прошлом митохондрии были самостоятельными живыми организмами, после чего внедрились в цитоплазму клеток, где ведут сапрофитное существование. Доказательством этого может являться наличие у митохондрий генетического аппарата (митохондриальной ДНК) и синтетического аппарата (митохондриальных рибосом).
Форма митохондрий может быть овальной, округлой, вытянутой и даже разветвленной, но преобладает овально-вытянутая. Стенка митохондрий образована двумя билипидными мембранами, разделенными пространством в 10 – 20 нм. При этом внешняя мембрана охватывает по периферии всю митохондрию в виде мешка и отграничивает ее от гиалоплазмы. Внутренняя мембрана отграничивает внутреннюю среду митохондрии, при этом она образует внутри митохондрии складки – кристы. Внутренняя среда митохондрии (митохондриальный матрикс) имеет тонкозернистое строение и содержит гранулы (митохондриальные ДНК и рибосомы).
Функция митохондрий – образование энергии в виде АТФ.
Источником образования энергии в митохондриях является пировиноградная кислота (пируват), которая образуется из белков, жиров и углеводов в гиалоплазме. Окисление пирувата происходит в митохондриальном матриксе, а на кристах митохондрий осуществляется перенос электронов, фосфорилирование АДФ и образование АТФ. Образующаяся в митохондриях АТФ является единственной формой энергии, которая используется клеткой для выполнения различных процессов.
Эндоплазматическая сеть
Эндоплазматическая сеть (ЭПС) в разных клетках может быть представлена в форме уплощенных цистерн, канальцев или отдельных везикул. Стенка состоит из билипидной мембраны.
Различают две разновидности ЭПС:
1) зернистую (гранулярную, или шероховатую);
2) незернистую (или гладкую). На наружной поверхности мембран зернистой ЭПС содержатся прикрепленные рибосомы.
В цитоплазме при электронно-микроскопическом исследовании можно обнаружить два вида ЭПС, однако один из них преобладает, что и определяет функциональную специфичность клетки. Эти две разновидности ЭПС не являются самостоятельными и обособленными формами, так как при более детальном исследовании можно обнаружить переход одной разновидности в другую.
Функции зернистой ЭПС:
1) синтез белков, предназначенных для выведения из клетки (на экспорт);
2) отделение (сегрегация) синтезированного продукта от гиалоплазмы;
3) конденсация и модификация синтезированного белка;
4) транспорт синтезированных продуктов в цистерны пластинчатого комплекса;
5) синтез компонентов билипидных мембран.
Функции гладкой ЭПС:
1) участие в синтезе гликогена;
2) синтез липидов;
3) дезинтоксикационная функция (нейтрализация токсических веществ посредством соединения их с другими веществами).
Пластинчатый комплекс Гольджи
Пластинчатый комплекс называют транспортным аппаратом клетки.
Пластинчатый комплекс Гольджи (сетчатый аппарат) представлен скоплением уплощенных цистерн и небольших везикул, ограниченных билипидной мембраной. Пластинчатый комплекс подразделяется на субъединицы – диктиосомы. Каждая диктиосома представляет собой стопку уплощенных цистерн, по периферии которых локализуются мелкие пузырьки. При этом в каждой уплощенной цистерне периферическая часть несколько расширена, а центральная сужена. В диктиосоме различают два полюса: цисполюс (направленный основанием к ядру) и трансполюс (направленный в сторону цитолеммы). Установлено, что к цисполюсу подходят транспортные вакуоли, несущие в комплекс Гольджи продукты, синтезированные в ЭПС. От трансполюса отшнуровываются пузырьки, несущие секрет к плазмолемме для его высвобождения из клетки. Часть мелких пузырьков, заполненных белками-ферментами, остается в цитоплазме и носит название лизосом.
Функция пластинчатого комплекса:
1) транспортная (выводит из клетки синтезированные в ней продукты);
2) конденсация и модификация веществ, синтезированных в зернистой ЭПС;
3) образование лизосом (совместно с зернистой ЭПС);
4) участие в обмене углеводов;
5) синтез молекул, образующих гликокаликс цитолеммы;
6) синтез, накопление, выведение муцинов (слизи);
7) модификация мембран, синтезированных в ЭПС и превращение их в мембраны плазмолеммы.
Лизосомы
Лизосомы – наиболее мелкие органеллы цитоплазмы, представляют собой тельца, ограниченные билипидной мембраной и содержащие электронноплотный матрикс, состоящий из набора гидролитических белков-ферментов (более тридцати видов гидролаз), способных расщеплять любые полимерные соединения (белки, жиры, углеводы), их комплексы на мономерные фрагменты.
Функция лизосом – обеспечение внутриклеточного пищеварения, т. е. расщепление как экзогенных, так и эндогенных биополимерных веществ.
Классификация лизосом:
1) первичные лизосомы – электронно-плотные тельца;
2) вторичные лизосомы – фаголизосомы, в том числе аутофаголизосомы;
3) третичные лизосомы или остаточные тельца.
Истинными лизосомами называют мелкие электронноплотные тельца, образующиеся в пластинчатом комплексе. Пищеварительная функция лизосом начинается только после слияния с фагосомой (фагоцитируемое вещество, окруженное билипидной мембраной) и образования фаголизосомы, в которой смешиваются фагоцитируемый материал и лизосомальные ферменты. После этого начинается расщепление биополимерных соединений фагоцитированного материала на мономеры – аминокислоты, сахара. Эти молекулы свободно проникают через мембрану фаголизосомы в гиалоплазму и затем утилизируются клеткой – идут на образование энергии или построение новых внутриклеточных макромолекулярных соединений.
Некоторые соединения не могут быть расщеплены ферментами лизосомы и поэтому выводятся из клетки в неизмененном виде при помощи экзоцитоза (процесс обратный фагоцитозу). Вещества липидной природы практически не расщепляются ферментами, а накапливаются и уплотняются в фаголизосоме. Данные образования были названы третичными лизосомами (или остаточными тельцами).