Полный справочник медицинской аппаратуры - Коллектив авторов (бесплатные версии книг .txt) 📗
Вспомогательные приборы, устройства, инструменты и материалы, необходимые для подготовки и проведения рентгенологических исследований: устройства для формирования условий исследования (опоры, фиксаторы, держатели, служащие для фиксации и поддержания пациента или его органов в определенном положении, и компрессионные устройства); средства и устройства для контрастирования (контрастные вещества и приборы для их изготовления и введения – катетеры, зонды, инъекторы, стенты, графты и др.); средства биоуправления, служащие для получения дополнительной информации при рентгеновском исследовании (биофазосинхро-низаторы, фазорентгенокардиографы, электрокимографы); инструментарий для интервенционной (внутрисосудистой) рентгенологии.
Средства обработки рентгеновского изображения подразделяются на три подгруппы.
1. Устройства для обработки носителей информации (все фотолабораторное оборудование – устройства для транспортировки, проявления и сушки рентгеновской, флюорографической, кино-и фотопленки, проявочные машины и автоматы, а также вспомогательное оборудование – зажимы, рамки, часы, термометры и т. д.).
2. Принадлежности для преобразования изображения (АРМ рентгенолога и рентгенолаборанта), вычислительные устройства для улучшения изображения.
3. Оборудование для просмотра рентгеновского изображения (негатоскопы, флюороскопы, проекционная аппаратура), а также черно-белые полутоновые и цветные дисплеи в цифровой флюорографии и вычислительной томографии. Информационно-архивное оборудование включает оборудование для хранения и поиска информации, средства для микрофильмирования и копирования, средства цифровых архивов.
Средства радиационной защиты делятся на средства коллективной защиты (защитные ограждения, защитные двери, окна, барьеры, стационарные ширмы, кабины) и индивидуальной защиты (фартуки, юбки, перчатки, очки и др.). Степень радиационной опасности контролируют дозиметрическими приборами для измерения мощности дозы на рабочих местах персонала и в смежных помещениях, индивидуальных доз, получаемых персоналом, и доз облучения пациентов.
Общетехническое и транспортное оборудование обеспечивает необходимые условия работы отделения. К нему относятся средства самозащиты, связи, сигнализации и оргтехники, а также средства транспортировки в отделении и больнице для больных (каталки со съемными деками, специальные каталки, кресла-столы) и для материалов (тележки для транспортировки пленки, кассет и др.).
Средства контроля включают многочисленные тест-объекты, фантомы, приборы для измерения выходных характеристик рентгеновских аппаратов и параметров рентгеновских изображений, в том числе встроенные в аппарат средства. Большинство из средств контроля используется инженерно-техническим персоналом, применяющим рентгеновскую аппаратуру, производящим настройку и ремонт. Однако есть целая группа устройств, которые необходимы рентгенолаборанту при обязательной периодической проверке аппаратуры в рентгеновском кабинете.
Магнитно-резонансная томография
Магнитно-резонансная томография (МРТ) – способ получения диагностических изображений органов и тканей организма человека, в основе которого лежит феномен ядерно-магнитного резонанса.
Магнитно-резонансная томография в последнее время заняла одно из ведущих мест в неинвазивной инструментальной диагностике. Постоянное развитие методики позволяет периодически находить новые сферы использования МРТ. Если сначала ее применение ограничивалось исследованиями центральной нервной системы, то в настоящее время МРТ используют в диагностике заболеваний практически всех органов и систем.
В 1946 г. ученые из США Феликс Блох и Ричард Пурселл независимо друг от друга открыли явление ядерного магнитного резонанса (ЯМР) для жидкостей и твердых тел. В 1952 г. оба ученых были удостоены Нобелевской премии по физике, методику ЯМР стали использовать в физической и органической химии, биофизике, биохимии. В 1972 г. П. Лаутербур, используя методику ЯМР, получил первое в мире двухмерное изображение двух стеклянных капилляров, заполненных жидкостью. Уже в 1980–1981 гг. в клиниках появились первые магнитно-резонансные томографы для исследования организма человека. После начала использования ядерного магнитного резонанса для медицинской диагностики термин «ядерный» был опущен из соображений маркетинга и по настоянию специалистов по радиологии. Это связано с негативным восприятием понятия «ядерный» массовым сознанием, с которым ЯМР не имеет ничего общего. Поэтому в наши дни используется термин «магнитно-резонансная томография».
В основе работы всех МР-томографов лежит явление магнитного резонанса. Этот физический феномен основан на возможности некоторых ядер атомов под действием магнитного поля поглощать энергию внешнего источника в радиочастотном диапазоне, а затем и выделять ее, возвращаясь на исходный энергетический уровень. При этом напряженность постоянного магнитного поля и частота радиочастотного магнитного поля должны строго соответствовать друг другу, что обеспечивает возникновение ядерного магнитного резонанса. Наиболее интересными являются ядра 1Н, 13С, 23Na, 31Р, так как все они присутствуют в теле человека. Для МРТ разработаны различные импульсные последовательности, которые в зависимости от цели определяют вклад того или иного параметра в интенсивность изображения исследуемых структур для получения оптимального контраста между нормальными и измененными тканями.
Для создания магнитного резонанса необходимо постоянное, стабильное и однородное магнитное поле.
В зависимости от напряженности магнитного поля все МР-то-мографы обычно делятся на сверхнизкие (менее 0,1 Тл), низкопольные (0,1–0,4 Тл), среднепольные (0,5 Тл), высокопольные (1–2 Тл), сверхвысокопольные (выше 2 Тл). Приборы, имеющие напряженность магнитного поля до 0,3 Тл, обычно имеют ре-зистивные или перманентные магниты, выше 0,3 Тл – сверхпроводящие. В практике верхний предел напряженности магнитного поля составляет 2–2,5 Тл, это предел безопасности магнитного поля для человеческого организма. Свыше этого предела поля предполагаются потенциально опасными и могут допускаться для использования только в исследовательских лабораториях. Более 70 % всех МР-томографов составляют модели со сверхпроводящими магнитами (0,5–1,5 Тл). В настоящее время в отличие от 1980-х гг. основные фирмы-производители МР-томографов («Дженерал Электрик», «Сименс», «Филипс», «Тошиба», «Пикер», «Брукер» и др.) особое внимание уделяют производству устройств со средним и низким полем, которые отличаются от высокопольных томографов компактностью, экономичностью при удовлетворительном качестве изображений и меньшей стоимости. Высокопольные системы используются преимущественно в научно-исследовательских центрах для проведения МР-спектроскопии.
МРТ не имеет ничего общего с рентгенологическими методами исследований, однако при ее развитии и внедрении в практику был использован опыт рентгеновской компьютерной томографии (КТ). К моменту возникновения МРТ КТ уже активно использовалась в клинической практике, внедрение МРТ стало возможным благодаря преимуществам этого метода обследования по сравнению с КТ.
К основным достоинствам МРТ относятся:
1) неинвазивность;
2) безвредность (отсутствие лучевой нагрузки);
3) трехмерный характер получения изображений;
4) естественный контраст от движущейся крови;
5) отсутствие артефактов от костных тканей;
6) высокая дифференциация мягких тканей;
7) возможность выполнения МР-спектроскопии для прижизненного изучения метаболизма тканей).
К основным недостаткам обычно относят достаточно большое время, необходимое для получения изображений (как минимум, несколько секунд, обычно – минуты), что приводит к появлению артефактов от дыхательных движений (что особенно снижает эффективность исследования легких), нарушений ритма (при исследовании сердца), невозможность надежного выявления камней, кальцификатов, некоторых видов патологии костных структур, достаточно высокую стоимость оборудования и его эксплуатации, специальные требования к помещениям, в которых находятся приборы (экранирование от помех), невозможность обследования больных с клаустрофобией, искусственными водителями ритма, крупными металлическими имплантатами из немедицинских металлов.