Mybrary.info
mybrary.info » Книги » Научно-образовательная » Математика » Истина и красота. Всемирная история симметрии. - Стюарт Йен (читать книги онлайн полностью без регистрации txt) 📗

Истина и красота. Всемирная история симметрии. - Стюарт Йен (читать книги онлайн полностью без регистрации txt) 📗

Тут можно читать бесплатно Истина и красота. Всемирная история симметрии. - Стюарт Йен (читать книги онлайн полностью без регистрации txt) 📗. Жанр: Математика. Так же Вы можете читать полную версию (весь текст) онлайн без регистрации и SMS на сайте mybrary.info (MYBRARY) или прочесть краткое содержание, предисловие (аннотацию), описание и ознакомиться с отзывами (комментариями) о произведении.
Перейти на страницу:

То, что можно делать с вещественными числами, можно делать и с комплексными, так что у нас появляется комплексная проективная плоскость. А если тут все работает, то почему бы не попробовать кватернионы или октонионы?

Здесь возникают сложности. Очевидные методы не работают из-за отсутствия коммутативности. Однако в 1949 году математический физик Паскуаль Жордан нашел осмысленный способ построить октонионную проективную плоскость вещественной размерности 16. В 1950 году Арман Борель — математик, специализировавшийся в теории групп — доказал, что вторая исключительная группа Ли F4 является группой симметрии октонионной проективной плоскости — вполне в духе комплексной плоскости, но только образованной из двух 8-мерных «линеек», деления на которых — октонионы, а не вещественные числа.

Итак, нашлось октонионное объяснение двух из пяти исключительных групп Ли. А что насчет трех оставшихся — E6, E7 и E8?

Взгляд на исключительные группы Ли как на грубые порождения злонамеренного божества был довольно распространенным, пока в 1959 году Ханс Фрейденталь и Жак Тите независимо не изобрели «магический квадрат» и не объяснили появление групп E6, E7 и E8.

Строки и столбцы магического квадрата соответствуют четырем нормированным алгебрам с делением. Если заданы любые две нормированные алгебры с делением, можно посмотреть в соответствующую строку и соответствующий столбец и найти в магическом квадрате — который определяет результат согласно не столь уж простому математическому предписанию — некоторую группу Ли. Появление некоторых из этих групп понять несложно; например, группа Ли, соответствующая строке с вещественными числами и столбцу с вещественными числами, есть группа SO(3) вращений в трехмерном пространстве. Если и строка, и столбец соответствуют кватернионам, то мы получаем ничуть не менее близкую математикам группу SO(12) вращений в двенадцатимерном пространстве. Если теперь взять октонионную строку или октонионный столбец, то там будут стоять исключительные группы Ли F4, E6, E7 и E8. [120] Отсутствующая здесь исключительная группа G2 также тесно связана с октонионами — как мы уже видели, она представляет собой их группу симметрии.

  R C H O
R SO(3) SU(3) Sp(3) F4
C SU(3) SU(3)
Истина и красота. Всемирная история симметрии. - i_060.png
SU(3)
SU(6) E6
H Sp(3) SU(6) SO(12) E7
O F4 E6 E7 E8

Итак, общее мнение состоит в том, что исключительные группы Ли существуют потому, что божество в своей мудрости дозволило существование октонионов. Надо было сразу догадаться. Как заметил Эйнштейн, господь изощрен, но не злонамерен. Все пять исключительных групп Ли являются симметриями различных октонионных геометрий.

Около 1956 года российский геометр Борис Розенфельд, размышляя, быть может, о магическом квадрате, предположил, что три оставшиеся исключительные группы E6, E7 и E8 также являются группами симметрии проективных плоскостей. Однако вместо октонионов здесь надо использовать следующие структуры:

• для E6: биоктонионы, построенные из комплексных чисел и октонионов;

• для E7: кватероктонионы, построенные из кватернионов и октонионов;

• для E8: октооктонионы, построенные из октонионов и октонионов.

Единственная небольшая загвоздка состояла в том, что никто не знал, как внятно определить проективные плоскости над такими комбинациями числовых систем. Тем не менее имеется ряд свидетельств в пользу осмысленности данной идеи. По ситуации на настоящий момент, мы можем доказать гипотезу Розенфельда, но только с использованием групп для построения проективных плоскостей. Это не полностью удовлетворительно, поскольку замысел состоял в том, чтобы продвигаться в другом направлении — от проективных плоскостей к группам. Тем не менее лиха беда начало. На самом деле для групп E6 и E7 уже найдены независимые способы построения проективных плоскостей. Лишь одна E8 пока держит оборону.

Если б не октонионы, то вся история о группах Ли выглядела бы попроще — как первоначально и надеялся Киллинг, — но была бы далеко не столь интересной. Не то чтобы у смертных была возможность выбирать — октонионы и все с ними связанное существуют. И некоторым таинственным образом само существование вселенной может зависеть от них.

Связь между октонионами и жизнью, вселенной и всем на свете возникает из теории струн. Ключевое свойство там — необходимость дополнительных измерений, в которых могли бы помещаться струны. Эти дополнительные измерения могут в принципе принимать огромное число самых разнообразных форм, и серьезная проблема — найти ту самую, правильную форму. В старой квантовой теории ключевым принципом являлась симметрия, и такова же ситуация в теории струн. Так что, без сомнения, группы Ли появляются на сцене в нужный момент. Все держится на этих симметриях по отношению к группам Ли, причем исключительные группы снова занимают особое место — не как типун на языке, но как возможности для реализации неожиданных совпадений, которые обеспечивают физике ее существование.

Что возвращает нас к октонионам.

Приведем пример влияния, которое они оказывают. В 1980-х годах физики заметили, что в пространстве-времени размерностей 3, 4, 6 и 10 выполняются некоторые занятные соотношения. Векторы (направленные отрезки) и спиноры (алгебраические штучки, исходно созданные Полем Дираком в его теории спина электрона) весьма тесно связаны между собой в размерности три, и только в ней. Почему? Оказывается, что соотношение между векторами и спинорами имеет место в точности тогда, когда размерность пространства-времени на 2 превосходит размерность некоторой нормированной алгебры с делением. Вычитая 2 из 3, 4, 6 и 10, получаем как раз 1, 2, 4 и 8.

Математический аспект здесь состоит в том, что в 3-, 4-, 6- и 10-мерных теориях струн [121] каждый спинор можно представить, используя два числа из соответствующей нормированной алгебры с делением. Такого не случается ни в каком другом числе измерений, и отсюда следует набор замечательных следствий для физики. Таким образом, у нас имеются четыре кандидата на теорию струн: вещественные, комплексные, кватернионные и октонионные. И дело складывается таким образом, что, по современным представлениям, из этих возможных теорий струн наибольшие шансы соответствовать реальности имеет 10-мерная теория, отвечающая октонионам. Если эта 10-мерная теория действительно соответствует реальности, то наша вселенная построена из октонионов.

И это не единственное место, где эти странные «числа», едва заслуживающие называться этим именем в силу минимума необходимых алгебраических соотношений, которые для них выполнены, оказываются весьма влиятельными. Та самая модная гипотетическая теория струн — M-теория — включает в себя 11-мерное пространство-время. Чтобы редуцировать воспринимаемую часть пространства-времени от 11 измерений к нашим четырем, следует избавиться от 7 измерений путем такого плотного их скручивания, чтобы они перестали быть заметными. И как же сделать такое для 11-мерной супергравитации? Надо использовать исключительную группу Ли G2 — группу симметрии октонионов.

вернуться

120

Не удержимся и приведем магический квадрат в явном виде, но без дополнительных пояснений, за исключением того, что здесь фигурируют не группы, а алгебры Ли. (Прим. перев.)

вернуться

121

Следует читать «в 3-, 4-, 6- и 10-мерных пространствах». (Примеч. перев.)

Перейти на страницу:

Стюарт Йен читать все книги автора по порядку

Стюарт Йен - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки mybrary.info.


Истина и красота. Всемирная история симметрии. отзывы

Отзывы читателей о книге Истина и красота. Всемирная история симметрии., автор: Стюарт Йен. Читайте комментарии и мнения людей о произведении.


Уважаемые читатели и просто посетители нашей библиотеки! Просим Вас придерживаться определенных правил при комментировании литературных произведений.

  • 1. Просьба отказаться от дискриминационных высказываний. Мы защищаем право наших читателей свободно выражать свою точку зрения. Вместе с тем мы не терпим агрессии. На сайте запрещено оставлять комментарий, который содержит унизительные высказывания или призывы к насилию по отношению к отдельным лицам или группам людей на основании их расы, этнического происхождения, вероисповедания, недееспособности, пола, возраста, статуса ветерана, касты или сексуальной ориентации.
  • 2. Просьба отказаться от оскорблений, угроз и запугиваний.
  • 3. Просьба отказаться от нецензурной лексики.
  • 4. Просьба вести себя максимально корректно как по отношению к авторам, так и по отношению к другим читателям и их комментариям.

Надеемся на Ваше понимание и благоразумие. С уважением, администратор mybrary.info.


Прокомментировать
Подтвердите что вы не робот:*