Искатели необычайных автографов или Странствия, приключения и беседы двух филоматиков - Александрова Эмилия Борисовна
— Что?! — взвивается Мате. — У Паскаля есть такая запись? Но ведь это же одно из тех положений, на которых основана кибернетика!
— В том-то и дело, мсье! И значит, у нас с вами есть все основания считать Паскаля ее отдаленным предшественником, что совершенно необходимо отметить еще одной чашкой чая.
Хозяин, улыбаясь, принимает у черта пустую чашку. Но что это? Рисунок на ней опять изменился! Теперь там изображены они сами — Фило, Мате и Асмодей в своем маркизовом обличье, восседающие на крыше руанской судебной палаты.
Улыбка медленно сползает с круглой физиономии Фило. Неужели его заставят копаться в теореме Дезарга? К счастью, эта неприятная для него операция переносится на другое время. Зато разговор о своей собственной теореме Мате откладывать не намерен. И многострадальный филолог покоряется своей участи.
— Итак, — говорит Мате, — напоминаю суть теоремы. Если на сторонах произвольного треугольника построить снаружи или внутри (значения не имеет) по равностороннему треугольнику и соединить прямыми их центры тяжести, то полученный таким образом новый треугольник тоже будет равносторонним.
— Насколько я понимаю, именно это и нуждается в доказательстве, — капризно замечает Фило.
— Совершенно верно. Какого рода доказательство вы желаете получить? Общее или частное — на числовом примере?
— Достаточно будет и частного!
— Понятно, — ядовито кивает Мате. — Тогда к общему виду потрудитесь привести его самостоятельно. А теперь вычертим произвольный треугольник и выберем систему координат с началом в одной из вершин треугольника. Скажем, в точке О. Ось иксов направим вдоль стороны ОВ. — Говоря это, Мате набрасывает чертеж в своем неизменном блокноте. — Как видите, координаты вершины О — нуль, нуль; вершины А — четыре, пять; вершины В — девять, нуль. Теперь нетрудно вычислить и размеры сторон треугольника.
— По известной формуле, — сейчас же соображает Асмодей. — Квадрат расстояния между двумя точками равен сумме квадратов разностей координат этих точек, иначе говоря
d2 = (X1 — Х2)2 + (У1 — У2)2.
— Очень хорошо. Подставим в эту формулу координаты соответствующих вершин треугольника. Тогда:
Ну, а теперь построим на сторонах нашего треугольника новые треугольники, на сей раз равносторонние. Намечаю их пунктиром. Буквами n, m и р обозначим точки пересечения медиан в каждом из них. Это и будут их центры тяжести. Точки эти, как известно, находятся на расстоянии двух третей медианы, считая от вершины. В первом равностороннем треугольнике это Am = От. Во втором — An = Вn. В третьем — Вр = Ор. Но так как в равностороннем треугольнике медианы являются в то же время и высотами, а высота в этом случае равна половине стороны, умноженной на
то
Иначе:
(Ат)2 = (mO)2 = (AO)2/3 = 41/3, (An)2 = (Вn)2 = AB2/3 = 50/3;
(Вр)2 = (Ор)2 = OB2/3 = 27.
Мате на мгновение отрывается от чертежа и, убедившись, что Фило еще жив, продолжает:
— Далее обозначим искомые координаты центров тяжести равносторонних треугольников. Точки m: х1, у1; точки n: x2, у2; точки р: х3, у3. Займемся сперва одним треугольником и по известной уже нам формуле о квадрате расстояния между двумя точками вычислим, что
(Am)2 = (Оm)2 = (x1 — 4)2 + (y1 — 5)2 = x12 + y12 = 41/3.
Решая систему двух уравнений:
(x1 — 4)2 + (y1 — 5)2 = x12 + y12 и x12 + y12 = 41/3, найдем, что
— А как это у вас получилось? — неожиданно для себя самого интересуется Фило.
— По-моему, это понятно всякому школьнику, — сердито отвечает Мате.
— Допустим. А как же быть с двумя знаками перед вторыми слагаемыми? Какой из них выбрать?
— Ну, а это уж где как. Обратите внимание на то, что первые слагаемые (2 и 2,5) — это координаты середины стороны ОА. В самом деле:
(O + 4)/2 = 2 и (O + 5)/2 = 2,5
А точка т лежит слева от этой середины, но выше ее. Следовательно, в первом равенстве (x1) надо сохранить знак минус, а во втором (у1) — знак плюс. Поэтому окончательно:
Точно таким же образом найдем координаты точек n и р:
Остается вычислить расстояния между т и п, п и р, р и т. Обозначим их буквой dс соответствующими индексами: тп, пр и рт. Тогда:
Если теперь вычислить
окажется, что все три результата одинаковы:
Ну, а раз равны квадраты расстояний, то равны и сами расстояния. Стало быть, соединив точки m, n и р, мы получим равносторонний треугольник.
— Квод демонстрандум эрат! Что и требовалось доказать, — торжественно заключает Асмодей.
— Не забудьте рассмотреть еще два частных случая первоначального треугольника, — суетливо напоминает Мате. — Когда сумма двух сторон равна третьей и когда одна из сторон равна нулю. — Он протягивает Фило и Асмодею заранее заготовленные чертежики. — Как видите, моя теорема справедлива также и для них.
— Благодарю вас, мсье! Поверьте, мне было чрезвычайно интересно! Поздравляю с удачей! — рассыпается бес, но вдруг совершенно неожиданно зевает и страшно смущается. — Пардон, мсье! Не подумайте, что это от вашей теоремы. Всему виной чай. Он всегда действует на меня, как снотворное. С вашего разрешения я вздремну немножко…
Он взлетает на верхнюю полку и скрывается в книге Лесажа, с силой захлопнув за собой картонную обложку. В ту же минуту оттуда начинает исходить легкое блаженное похрапывание: «Хрр-фью… хрр-фью…»
Филоматики растроганно переглядываются.
— Перерыв?
— Перерыв!