Если бы числа могли говорить. Гаусс. Теория чисел - Лизана Антонио Руфиан (читать полные книги онлайн бесплатно txt) 📗
Пьер Ванцель, французский математик, в 1837 году доказал, что условие Гаусса является необходимым, и это превратило теорему в полное описание правильных многоугольников, которые можно построить с помощью линейки и циркуля. Математики называют такие условия тогда и только тогда. То есть у нас полностью определены правильные многоугольники, которые мы можем построить с помощью линейки и циркуля. Так, треугольник (3 = 2²0 +1), квадрат (4 = 2²1 ), пятиугольник (5 = 2²1 +1) и шестиугольник (6 = 2-(2²0 +1)) можно построить с помощью линейки и циркуля, а правильный семиугольник (7 =/= 2²n + 1 Vn) нельзя. Далее, правильный восьмиугольник (8 = 2³) можно построить, а правильный девятиугольник (9 = 3² =/= 2²n +1 Vn) — нет· Очевидно, что многоугольник с 17 сторонами, построенный Гауссом, — это пример многоугольников, в которых число сторон точно совпадает с одним из чисел Ферма, так как F2 = 2²2 +1 = 17.
Но это не означает, что нет людей, которые посвящали бы свое время и энергию безуспешному нахождению способов построения семиугольников или других фигур, что, как доказано математиками, невозможно осуществить с помощью линейки и циркуля. Это касается квадратуры круга, трисекции угла или удвоения куба. Первой задачей со страстью, которая сохранилась всю жизнь, занимался не кто иной, как Наполеон. Однако эту битву, в отличие от битв с прусской армией, Наполеон не смог, да и не мог бы выиграть.
ГЛАВА 2 «Арифметические исследования»
Гаусс — отец теории чисел в ее современном понимании. Среди других его достижений — решительный импульс в использовании комплексных чисел, благодаря чему он оставил нам инструмент, с помощью которого можно подойти к решению полиномиальных уравнений любого типа. Этой теме посвящена работа «Арифметические исследования», в которой Гаусс собрал свои многочисленные исследования, совершенные в молодые годы.
Гаусс привел математику XIX века к целям, о которых до него и не подозревали. Первым огромным вкладом ученого в алгебру была докторская диссертация, которую, как мы уже знаем, он защитил заочно в 1799 году в Хельмштедтском университете. Руководителем работы был Иоганн Фридрих Пфафф (1765-1825), один из великих математиков того времени, и он всегда относился с особым вниманием к своему подопечному. Пфафф считал своим долгом заботиться о том, чтобы его молодой друг больше двигался, и они часто гуляли днем, разговаривая о математике. Поскольку Гаусс отличался не только скромностью, но и некоторой замкнутостью, возможно, Пфафф не смог разглядеть все черты его натуры, однако известно, что сам молодой диссертант восхищался своим преподавателем, которого считал лучшим математиком Германии — благодаря не только отличным научным работам, но и простому и открытому характеру. Со временем ученик превзойдет учителя. Барон Александр фон Гумбольдт (1769-1859), знаменитый путешественник и любитель наук, с которым Гаусс сотрудничал, изучая геомагнетизм, спросил Пьера-Симона Лапласа (1749-1827), одного из выдающихся французских математиков, кого тот считает самым великим математиком в Германии. Лаплас ответил: «Пфаффа». «А Гаусс?» — удивился фон Гумбольдт, который поддерживал кандидатуру Карла Фридриха на пост директора Гёттингенской обсерватории. «О, — сказал Лаплас, — Гаусс — самый великий в мире».
Название докторской диссертации Гаусса звучит так: Demonstratio nova theorematis omnem functionem algebraicam rationalem integram unius variabilis in factores reales primi vel secundi gradus resolvi posse («Новое доказательство теоремы, в которой говорится, что любая алгебраическая рациональная функция может быть разложена на множители первой или второй степени с действительными коэффициентами»). В этом заголовке содержится небольшая ошибка, которая принесла молодому Гауссу еще больше величия: это доказательство было не «новым», а первым в истории полным доказательством основной теоремы алгебры.
Математика — царица наук, а арифметика — царица математики.
Карл Фридрих Гаусс
В этой теореме, в том виде, в каком ее формулировал Гаусс (затем она была обобщена), утверждается, что любой многочлен от одной переменной имеет столько корней, сколько показывает его степень, допуская, что эти корни могут быть множественными. Многочлен Р — это выражение вида Р(x) = anxn + an-1xn-1 + ... + а1х + a0, где коэффициенты аn, аn-1, ... , a1, a0 — действительные числа. Степень Р — это наибольший показатель степени, в которую нужно возвести переменную х, то есть n. Корни многочлена — это точки, в которых он равен нулю, то есть такие точки х, в которых Р(х) = 0. В качестве естественного следствия из теоремы можно сделать вывод, что любой многочлен степени n с n корнями, необязательно разными, которые мы обозначим r1, r2,..., rn, можно разложить как произведение одночленов вида:
Р(х) = (x-r1) · (x - r2) · ... · (x - rn).
Задачи такого типа часто встречаются в повседневной жизни, и их решение заботило математиков с самого начала развития этой науки. Очевидно, что задачи типа x - 3 = 0 имеют единственный корень, то есть 3. Если мы возьмем многочлен x + 3 = 0, то для его решения нам придется учитывать отрицательные числа, поскольку решение — это -3. Именно по этой причине потребовалось расширить множество натуральных чисел до множества целых чисел, которое включает в себя и отрицательные числа. Вавилоняне и египтяне осознали, что для решения простых уравнений первой степени нужно новое расширение, в данном случае это дроби, поскольку решением уравнения 3x — 2 = 0 является величина 2/3. Множество, которое включало в себя дроби, назвали множеством рациональных чисел.
С увеличением показателя степени многочлена все усложняется, и такое простое уравнение, как х²-2 = 0, привело греков к великому открытию, поскольку решение нельзя было выразить в виде дроби. Действительно, методом от противного было найдено аналитическое доказательство того, что sqrt(2) не является рациональным числом.
Находчивые древнегреческие математики предложили доказательство нерациональности sqrt(2), пользуясь методом от противного, который состоит в том, чтобы предположить противоположное тому, что мы хотим доказать, и прийти к логическому противоречию. Предположим, что sqrt(2) рационально, то есть его можно выразить с помощью некоторой дроби p/q. Теперь предположим, что дробь невозможно сократить, то есть что р и q — взаимно простые. Иначе было бы достаточноразделить оба элемента дроби на наибольший общий делитель. Так как sqrt(2) = p/q, получается, что, если возвести в квадрат оба члена, то 2 = p²/q², значит, 2q² = p², то есть р² — это четное число, и, следовательно, таким же является р. Так как р — четное число, то существует натуральное число k, такое, что р = 2k. Если подставить новое значение р в наше уравнение, получится, что 2q² = 4k². Это предполагает, что q² = 2k², то есть q -— также четное. Но это означает, что нашу исходную дробь можно сократить, а это противоречит условиям, следовательно, предположение, что sqrt(2) — рациональное число, ложно.
Столкнувшись с невозможностью выразить такие числа, как sqrt(2), в виде дроби, математики назвали их иррациональными. Несмотря на сложности, связанные с их точной записью, иррациональные числа имеют реальное значение, поскольку их можно представить как точки на числовой прямой. Число sqrt(2) находится между 1,4 и 1,5, и если построить прямоугольный треугольник, катеты которого будут равны 1, мы знаем, что его гипотенуза равна sqrt(2) по теореме Пифагора. Множество чисел, в которое включались бы и рациональные, и иррациональные числа, назвали действительными числами, и они представлены на числовой прямой.