Математика. Утрата определенности. - Клайн Морис (бесплатные версии книг .TXT) 📗
Вопрос о том, следует ли считать бесконечные множества актуально или потенциально бесконечными, имеет длинную историю. Аристотель в своей «Физике» ([6], т. 3, с. 59-221) утверждал: «Остается альтернатива, согласно которой бесконечное имеет потенциальное существование… Актуально бесконечное не существует». По мнению Аристотеля, актуальная бесконечность не нужна математике. Греки вообще считали бесконечность недопустимым понятием. Бесконечность — это нечто безграничное и неопределенное. Последующие дискуссии нередко лишь затемняли существо дела, так как математики говорили о бесконечности как о числе, не давая явного определения понятия бесконечности и не указывая свойства этого понятия. Так, Эйлер довольно легкомысленно утверждал в своей «Алгебре» (1770), что 1/0 — бесконечность, хотя и не счел нужным определить, что такое бесконечность, а лишь ввел для нее обозначение ∞. Без тени сомнения Эйлер утверждал также, что 2/0 вдвое больше, чем 1/0. Еще больше недоразумений возникало в тех случаях, когда речь шла об использовании символа ∞ для записи пределов при n,стремящемся к бесконечности (например, для записи того, что предел 1/ nпри n,стремящемся к ∞, равен 0). В подобных случаях символ ∞ означает лишь, что nнеограниченно возрастает и может принимать сколь угодно большие (но конечные!) значения, при которых разность между 0 и 1/ nстановится сколь угодно малой. Необходимость в обращении к актуальной бесконечности при таких предельных переходах не возникает.
Большинство математиков (Галилей, Лейбниц, Коши, Гаусс и другие) отчетливо понимали различие между потенциально бесконечными и актуально бесконечными множествами и исключали актуально бесконечные множества из рассмотрения. Если им приходилось, например, говорить о множестве всех рациональных чисел, то они отказывались приписывать этому множеству число — его мощность. Декарт утверждал: «Бесконечность распознаваема, но не познаваема». Гаусс писал в 1831 г. Шумахеру: «В математике бесконечную величину никогда нельзя использовать как нечто окончательное; бесконечность — не более чем façon de parle[манера выражаться], означающая предел, к которому стремятся одни величины, когда другие бесконечно убывают».
Таким образом, введя актуально бесконечные множества, Кантор выступил против традиционных представлений о бесконечности, разделяемых великими математиками прошлого. Свою позицию Кантор пытался аргументировать ссылкой на то, что потенциальная бесконечность в действительности зависит от логически предшествующей ей актуальной бесконечности. Кантор указывал также на то, что десятичные разложения иррациональных чисел, например числа √2, представляют собой актуально бесконечные множества, поскольку любой конечный отрезок такого разложения дает лишь конечное приближение к иррациональному числу. Сознавая, сколь резко он расходится во взглядах со своими предшественниками, Кантор с горечью признался в 1883 г.: «Я оказался в своего рода оппозиции к общепринятым взглядам на математическую бесконечность и к нередко отстаиваемым суждениям о природе числа».
В 1873 г. Кантор не только занялся изучением бесконечных множеств как «готовых» (т.е. реально существующих) сущностей, но и поставил задачу классифицировать актуально бесконечные множества ([15]*, [53]). Введенные Кантором определения позволяли сравнивать два актуально бесконечных множества и устанавливать, содержат ли они одинаковое, «число элементов» или нет. Основная идея Кантора сводилась к установлению взаимно-однозначногосоответствия между множествами. Так, 5 книгам и 5 шарам можно сопоставить одно и то же число 5 потому, что книги и шары можно разбить на пары, каждая из которых содержит по одной, и только одной книге, и по одному, и только одному, шару. Аналогичное разбиение на пары Кантор применил, устанавливая взаимно-однозначное соответствие между элементами бесконечных множеств. Например, взаимно-однозначное соответствие между положительными целыми числами и четными числами можно установить, объединив те и другие в пары:
1 2 3 4 5 …,
2 4 6 8 10 …
Каждому целому числу при этом соответствует ровно одно четное число (равное удвоенному целому), а каждому четному числу соответствует ровно одно целое число (равное половине четного). Следовательно, в каждом из двух бесконечных множеств — множестве целых чисел и множестве четных чисел — элементов столько же, сколько в другом множестве. Установленное соответствие (то, что все множество целых чисел можно поставить во взаимно-однозначное соответствие с частью этого множества) казалось неразумным предшественникам Кантора {99}и заставляло их отвергать все попытки рассмотрения бесконечных множеств. Но это не испугало Кантора. С присущей ему проницательностью он понял, что бесконечные множества могут подчиняться новым законам, не применимым к конечным совокупностям или множествам, подобно тому как, например, кватернионы подчиняются законам, не применимым к вещественным числам. И Кантор определил бесконечное множество как такое множество, которое можно поставить во взаимно-однозначное соответствие со своим собственным (т.е. отличным от всего множества) подмножеством.
Идея взаимно-однозначного соответствия привела Кантора к неожиданному результату: он показал, что можно установить взаимно-однозначное соответствие между точками прямой и точками плоскости (и даже точками n-мерного пространства). По поводу этого результата он писал в 1877 г. своему другу Рихарду Дедекинду: «Я вижу это, но не могу в это поверить». Тем не менее Кантор поверил в правильность полученного им результата и, следуя принципу взаимно-однозначного соответствия, установил для бесконечных множеств отношение эквивалентности, или равенства («равномощности» двух множеств).
Кантор выяснил также, в каком смысле следует понимать, что одно бесконечное множество большедругого {100}: если множество Aможно поставить во взаимно-однозначное соответствие с частью или собственным подмножеством множества B,а множество Bневозможно поставить во взаимно-однозначное соответствие с множеством Aили собственным подмножеством множества A,то множество Bпо определению больше множества A.Это определение по существу обобщает на бесконечные множества то, что непосредственно очевидно в случае конечных множеств. Если у нас имеется 5 шаров и 7 книг, то между шарами и частью книг можно установить взаимно-однозначное соответствие, но невозможно установить взаимно-однозначное соответствие между всеми книгами и всеми шарами или частью шаров. Используя свои определения равенства и неравенства бесконечных множеств, Кантор сумел получить поистине удивительный результат: множество целых чисел равно («равномощно») множеству рациональных чисел (всех положительных и отрицательных целых чисел и дробей), но меньше множества всех вещественных (рациональных и иррациональных) чисел.
Подобно тому как количество элементов в конечных множествах мы обозначаем числами 5, 7, 10 и т.д., Кантор предложил ввести специальные символы nдля обозначения количеств элементов в бесконечных множествах. Множество целых (или натуральных) чисел и множества, которые можно поставить во взаимно-однозначное соответствие с этим множеством, содержат одинаковое количество (или «число») элементов, которое Кантор обозначил символом N 0(алеф-нуль; алеф — первая буква алфавита на иврите). Так как, по доказанному, множество всех вещественных чисел больше множества целых чисел, Кантор обозначил количество элементов в множестве всех вещественных чисел новым символом — c.
Кантору удалось доказать, что для любого заданного множества всегда найдется множество, большее исходного. Так, множество всех подмножеств данного множествавсегда больше первого множества. Не вдаваясь в подробности доказательства этой теоремы, продемонстрируем разумность этого результата на примере конечных множеств. Если множество состоит из 4 элементов, то из них можно составить 4 различных подмножества, содержащих по 1 элементу; 6 различных подмножеств, содержащих по 2 элемента; 4 различных подмножества, содержащих 3 элемента; наконец, 1 множество, содержащее 4 элемента. Если добавить сюда еще пустое множество, совсем не содержащее элементов, то общее число подмножеств окажется равным 16 = 2 4, что, разумеется, больше 4. В соответствии с результатом, имеющим место для конечных множеств, Кантор обозначил количество подмножеств (бесконечного!) множества, содержащего αэлементов (где α— трансфинитное число), через 2 α ; его результат гласил: 2 α> α. Рассматривая все возможные подмножества множества целых чисел, Кантор сумел показать, что 2 N0 = c,где c— «число» всех вещественных чисел.