Том13. Абсолютная точность и другие иллюзии. Секреты статистики - Грима Пере (мир книг .TXT) 📗
Вес булок для каждой печи и каждого оператора в отдельности.
Даже для очень малого объема данных, например для такого:
21,1; 17,8; 19,7; 18,6; 16,8; 21,7; 28,7; 20,1; 19,5; 17,8,
на простой точечной диаграмме видны подробности, которые можно упустить при простом анализе данных «на глаз». В этом случае видно, что одно значение существенно отличается от остальных, и следует проанализировать причины подобного отклонения (возможно, это простая опечатка: оператор ввел 28,7 вместо 18,7). Эти вопросы крайне важны, так как ошибка в исходных данных может перечеркнуть всю проделанную работу.
Представление множества данных с помощью точечной диаграммы.
Если мы хотим учесть порядок выборки данных, гистограммы и точечные диаграммы нам не помогут. Для этого нужно представить данные в виде временного ряда, как показано на следующем рисунке, где четко заметно увеличение среднего роста населения Испании на протяжении XX века. Разумеется, на основе графиков подобного типа нельзя делать экстраполяции: вовсе не факт, что через 1000 лет средний рост будет находиться у отметки 2 м 70 см.
Изменение среднего роста населения Испании в период с 1910 по 1982 год.
(Источник: X. Спийкер, X. Перес и А. Камара. Изменение среднего роста населения Испании в XX веке по результатам исследования министерства здравоохранения. Журнал Estadistica Espahola, № 169, 2008 г.)
Помимо стандартных графиков, которые мы только что рассмотрели, круговых и им подобных диаграмм, можно использовать и другие, не столь известные. Существует, например, диаграмма «стебель — листья».
Рассмотрим практический пример. Группу из 92 студентов попросили измерить пульс. На гистограмме на следующей странице представлены полученные значения (все данные, использованные в этом примере, содержатся в файлах примеров пакета статистических программ Minitab).
Гистограмма и диаграмма «стебель — листья», на которых представлены данные о пульсе для группы из 92 студентов.
При построении диаграммы «стебель — листья» все значения делятся на две части. Наименее значимая часть (в этом случае единицы) образует «листья», другая (десятки и сотни) — «стебель». Наименьшим значением является 48, далее следует 54 и снова 54, затем три раза 58 и так далее до последнего значения, равного 100. Заметим, что строки диаграммы имеют ту же форму, что и столбцы гистограммы. Следовательно, диаграмма «стебель — листья» содержит информацию, представленную на гистограмме, и кроме этого обладает следующими свойствами.
1. Исходные данные можно восстановить. При взгляде на гистограмму можно увидеть, что существует значение в интервале между 45 и 50, но мы не можем сказать, чему оно равно. В диаграмме «стебель — листья» эта информация не теряется.
2. Диаграмма «стебель — листья» позволяет увидеть детали, которые остаются незамеченными на других графиках. Например, не следует думать, что студенты измеряли свой пульс в течение одной минуты. Если бы это было так, то примерно половина значений были бы четными, а половина — нечетными. Однако мы видим, что все значения четные. Это означает, что студенты измеряли пульс в течение 15 или 30 секунд, а затем умножали результат на 2 или на 4. Результаты, полученные таким образом, имеют большую погрешность по сравнению с результатами, полученными реальным измерением в течение одной минуты.
Иногда ученые разрабатывают особые диаграммы для определенных задач. В качестве примера можно привести диаграммы, которыми сопровождаются футбольные трансляции. С помощью ряда переменных на них отображается ход матча, указываются голевые моменты каждой команды, а также другая информация — от числа пасов в штрафную зону до забитых голов и незабитых пенальти.
Ход атак во время футбольного матча.
(источник: Elpais.com)
При построении графиков чаще всего используются компьютерные программы. Это могут быть пакеты статистических программ, программы для работы с электронными таблицами или системы обработки текстов.
Текстовый редактор, использованный при написании этой книги, позволяет с легкостью создавать и применять в расчетах диаграммы. С его помощью можно строить красивейшие трехмерные графики или простые плоские диаграммы. Нужно учитывать, что трехмерные диаграммы, как правило, более эффектны, но могут быть менее понятны. Тип диаграммы следует выбирать в зависимости от контекста и из соображений наглядности.
Графики, построенные в текстовом редакторе Word.
В завершение этого раздела, посвященного графическому представлению значений одной переменной, вернемся к нашему примеру с пекарней. Допустим, что в пекарне есть третья печь, для которой также были произведены измерения веса 80 готовых булок (столько же измерений было проведено для печи № 1). Как вы охарактеризуете вариацию веса хлеба, выпеченного в новой печи, по сравнению с печью № 1?
Как вы оцените печь № 3 по сравнению с печью № 1?
Если вам кажется, что вес хлеба, выпеченного в печи № 3, варьируется сильнее, чем вес хлеба, выпеченного в печи № 1, вы ошибаетесь. На обеих гистограммах представлено одно и то же множество данных. Они выглядят по-разному, так как был выбран разный масштаб. Вас сбил с толку выбранный способ представления данных. Мораль: при построении диаграмм для сравнения различных данных убедитесь, что диаграммы имеют одинаковый масштаб. Программа по умолчанию изменяет масштаб с учетом вариации данных. Нужно скорректировать масштаб вручную, иначе диаграммы будут неверно представлять данные и, образно говоря, вы попадете в сети, которые сами же и расставили.
Для представления связи между двумя переменными используются диаграммы, подобные следующей.
Соотношение цены и мощности двигателя 449 автомобилей с дизельным двигателем.
(источник: интернет-страница Королевского автомобильного клуба Испании, 10 ноября 2009 г., указанные параметры поиска: седан, дизель, 4 двери)
Можно заметить, что некоторые значения, например 150 л. с., встречаются чаще других. Также можно определить, какие автомобили дешевле аналогов с той же мощностью двигателя. Видна четкая взаимосвязь между переменными, но это не означает, что между ними существует причинно-следственная связь. Например, если мы построим подобный график, демонстрирующий связь ущерба, причиненного пожаром, с числом пожарных, задействованных при его тушении, станет очевидна четкая взаимосвязь: чем больше ущерб, тем больше пожарных, но это не означает, что ущерб причинили пожарные. Другой пример: школьники с большим размером ноги делают меньше орфографических ошибок, чем школьники с меньшим размером. В это трудно поверить, не так ли? Тем не менее чем старше дети, тем больше у них размер ноги и тем меньше они делают ошибок. В обоих случаях существует третья переменная, которая имеет взаимосвязь с двумя рассматриваемыми переменными. В первом случае это масштаб пожара, во втором — возраст школьника.