Математика. Утрата определенности. - Клайн Морис (бесплатные версии книг .TXT) 📗
[Любое число] допустимо вычитать из большего числа, но любаяпопытка вычесть какое-либо число из меньшего числа смехотворна сама по себе. Тем не менее именно это пытаются делать алгебраисты, толкующие о числах, меньших нуля; об умножении отрицательного числа на отрицательное, дающем положительное произведение; о мнимых числах. Они разглагольствуют о двух корнях любого уравнения второй степени и предлагают тому, кто их слушает, попытать счастья с доставшимся ему уравнением; они толкуют о решении уравнения, имеющего лишь невозможные, или мнимые корни; они умеют находить невозможные числа, которые при многократном переумножении дают единицу. Все это не более чем жаргон, в котором нет ни капли здравого смысла. Но будучи однажды принят, он, подобно многим другим измышлениям, находит множество горячих приверженцев среди тех, кто охотно принимает на веру всякую бессмыслицу и не склонен к серьезным размышлениям.
В статье, послужившей как бы приложением к сочинению барона Мазера (1800), о котором мы уже упоминали в гл. V, Френд подверг критике общее правило, согласно которому число корней уравнения равно его степени. Френд утверждал, что оно верно лишь для некоторыхуравнений, и, разумеется, в качестве примера приводил уравнения, все корни которых положительны. О математиках, приемлющих названное общее правило, Френд говорил, что «они, дабы скрыть ложность принимаемого ими общего утверждения или придать ему хотя бы на словах видимость истины, оказываются вынужденными дать особые названия тому скопищу величин, которые им хотелось бы выдать за корни уравнения, хотя те таковыми не являются».
Знаменитый французский геометр Лазар Никола Карно (1753-1823) известен не только своими оригинальными работами, но и как автор обстоятельного методологического сочинения «Размышления о метафизике исчисления бесконечно малых» (1797, 2-е (переработанное) изд. — 1813), переведенного на многие языки [45]. Карно прямо утверждал: нелепо думать, будто что-то может быть меньше, чем ничто. Отрицательные числа, по мнению Карно, можно вводить в алгебру как некие фиктивные величины, облегчающие вычисления, но, разумеется, это не настоящие величины, и они могут приводить к неверным заключениям.
Начавшийся в XVIII в. спор о логарифмах отрицательных и комплексных чисел совершенно лишил математиков душевного покоя, так что даже в XIX в. они испытывали настоятельную потребность усомниться в существовании как отрицательных, так и комплексных чисел. Роберт Вудхаус из Кембриджского университета опубликовал статью «О непременной истинности некоторых заключений, получаемых с помощью мнимых величин», где, в частности, утверждалось: «Парадоксы и противоречия, в которых обвиняют друг друга математики, вовлеченные в спор относительно логарифмов отрицательных и мнимых величин, можно использовать как веские аргументы против использования этих величин в исследованиях».
Коши — несомненно, один из величайших математиков первой половины XIX в. и создатель теории функций комплексного переменного — как это ни парадоксально, в первые десятилетия XIX в. сам отказывался считать числами такие выражения, как a + b√−1.В своем знаменитом «Курсе анализа» ( Cours d'analyse,1821) он назвал подобные выражения «количествами, лишенными всякого смысла». Тем не менее, продолжал он, эти «бессмысленные количества» позволяют высказывать некие утверждения относительно (реально существующих) вещественных чисел aи b;так, например, равенство
a+ b√−1 = c+ d√−1
указывает, что a = cи b = d.По утверждению Коши, «каждое равенство, связывающее мнимые числа, есть не более как символическая запись двух равенств вещественных чисел». Даже в 1847 г. он выдвинул весьма сложную теорию, призванную обосновать операции над комплексными числами без использования при этом величины √−1, от которой, говорил Коши, «мы можем полностью отречься и которую должны оставить без сожаления, поскольку нам не известно, ни что означает этот символ, ни какой смысл надлежит ему приписывать».
В 1831 г. Огастес де Морган, автор знаменитых «законов де Моргана» математической логики, внесший немалый вклад в развитие алгебры, высказал свои возражения против отрицательных и комплексных чисел в книге «Об изучении и трудностях математики», в которой, по его словам, не содержалось ничего, что нельзя было бы найти в лучших учебниках, используемых в те времена студентами Оксфорда и Кембриджа:
Мнимое выражение √−aи отрицательное выражение −bсходны в том, что каждое из них, встречаясь как решение задачи, свидетельствует о некоторой противоречивости или абсурдности. Что же касается реального смысла, то оба выражения надлежит считать одинаково мнимыми, так как 0 − aстоль же непостижимо, как и √−a.
В качестве примера де Морган приводит следующую задачу: отцу — 56 лет, а сыну — 29; через сколько лет отец будет вдвое старше сына? Де Морган составляет уравнение 56 + x = 2(29 + x)и, решая его, получает x = −2.Такой ответ он считает абсурдным, но замечает, что если xзаменить на, −x,то данное уравнение перейдет в 56 − x = 2(29 − x),откуда следует, что x = 2.Отсюда де Морган делает вывод, что исходная задача была неверно поставлена: отрицательный ответ указывает на ошибку в первоначальной формулировке задачи, где на самом деле следует спрашивать: «Сколькими годами ранее отец был вдвое старше сына?»
По поводу комплексных чисел де Морган замечает:
Мы показали, что символ √−aлишен смысла или, точнее, внутренне противоречив и абсурден. Тем не менее такие символы позволили создать часть алгебры, приносящую немалую пользу. Объясняется это тем, что применение к таким выражениям [комплексным числам] общих правил алгебры, как должно быть проверено на опыте, никогда не приводит к ложным результатам. Обращение к опыту такого рода, по-видимому, противоречит первым принципам, положенным в основу алгебры. Мы не можем отрицать, что в действительности все обстоит именно так, Не следует, однако забивать, что та область алгебры, о которой идет речь, составляет лишь небольшую и изолированную часть обширного предмета, ко всем прочим частям которого указанные принципы применимы в полном объеме. [Принципы, которые упоминает де Морган, представляют собой математические истины, с необходимостью выводимые из аксиом с помощью дедуктивных рассуждений.]
Далее де Морган сравнивает отрицательные и комплексные корни:
Итак, между отрицательными и мнимыми решениями уравнения различие все же существует. Если задача допускает отрицательное решение, то, изменив знак неизвестного xв уравнении, которое привело к такому решению, мы можем либо обнаружить ошибку, допущенную при составлении уравнения, либо показать, что вопрос задачи чрезмерно сужен, и, расширив его надлежащим образом, мы получим удовлетворительное решение. Если же задача допускает мнимое решение, то дело обстоит совсем не так.
Несколько дальше де Морган замечает:
Нам отнюдь не хотелось бы воспрепятствовать проникновению в суть предмета тому, кто впервые изучает алгебру, поэтому мы не станем приводить здесь во всех подробностях доводы за и против по таким вопросам, как применение отрицательных чисел и т.д., недоступные пониманию учащегося и не вполне убедительные. Вместе с тем мы считаем своим долгом предуведомить тех, кто изучает алгебру, о существующей трудности и указать на природу ее. Мы надеемся, что учащийся, рассмотрев достаточное число примеров, разобранных отдельно, обретет уверенность в тех результатах, к которым приводят правила.
Не более чем де Морган был склонен принимать отрицательные и комплексные числа Уильям Роуан Гамильтон, один из самых выдающихся математиков XIX в., о котором мы упоминали ранее. Свои возражения против необычных чисел он сформулировал в работе от 1837 г.: