Mybrary.info
mybrary.info » Книги » Научно-образовательная » Математика » Том 12. Числа-основа гармонии. Музыка и математика - Арбонес Хавьер (читать книги онлайн полностью без регистрации .txt) 📗

Том 12. Числа-основа гармонии. Музыка и математика - Арбонес Хавьер (читать книги онлайн полностью без регистрации .txt) 📗

Тут можно читать бесплатно Том 12. Числа-основа гармонии. Музыка и математика - Арбонес Хавьер (читать книги онлайн полностью без регистрации .txt) 📗. Жанр: Математика. Так же Вы можете читать полную версию (весь текст) онлайн без регистрации и SMS на сайте mybrary.info (MYBRARY) или прочесть краткое содержание, предисловие (аннотацию), описание и ознакомиться с отзывами (комментариями) о произведении.
Перейти на страницу:

Интервалы, меньшие и равные октаве, в музыкальной нотации.

Классификация интервалов

Интервалы делятся на большие, малые и чистые в зависимости от числа полутонов. Например, два звука секунды до-ре разделены двумя полутонами, поэтому этот интервал называется большая секунда. Две ноты другой секунды, си-до, разделены одним полутоном, поэтому этот интервал называется малая секунда. Большими и малыми могут быть все интервалы, за исключением интервалов из пяти, шести и семи полутонов. Интервал в пять полутонов называется чистой квартой, в семь полутонов — чистой квинтой. Частный случай — нота, находящаяся ровно посередине октавы: в октаве до-до фа-диез удалено на шесть полутонов от более низкого до (увеличенная кварта) и на шесть полутонов от более высокого до (уменьшенная квинта).

Если звуки берутся последовательно, то такой интервал называется мелодическим. Он может быть восходящим или нисходящим. Вид интервала также указывается в его названии. Например, восходящий интервал до-ре называется восходящей большой секундой, нисходящий интервал до-ре — нисходящей малой септимой. Нисходящий интервал ре-до — нисходящая большая секунда, восходящий интервал ре-до — восходящая малая септима. В зависимости от контекста вид интервала может не указываться.

Том 12. Числа-основа гармонии. Музыка и математика - _229.jpg_1

Все возможные мелодические интервалы между двумя соседними нотами.

В следующей таблице приведено количество полутонов в различных интервалах:

Том 12. Числа-основа гармонии. Музыка и математика - _230.jpg

Обращения интервалов

Обращенным называется интервал, который в сумме с основным интервалом охватывает все 12 полутонов октавы. Основной и обращенный интервалы напоминают дополнительные углы в геометрии, что показано на рисунке:

Том 12. Числа-основа гармонии. Музыка и математика - _231.jpg

Обращенным интервалом чистой кварты (из пяти полутонов) является чистая квинта (из семи полутонов): соль-до (чистая кварта) и до-соль (чистая квинта). Дополнительным к углу α называется такой угол β, который в сумме с ним дает 90°.

Том 12. Числа-основа гармонии. Музыка и математика - _232.jpg

Два интервала, в сумме образующие октаву.

В следующей таблице приведены обращенные интервалы для всех основных интервалов:

Том 12. Числа-основа гармонии. Музыка и математика - _233.jpg
Обертоны

Когда музыкальный инструмент издает звук, он имеет конкретную частоту F, но человеческое ухо воспринимает этот звук не как чистый тон, а как сумму бесконечного числа составляющих. Струна колеблется из стороны в сторону не упорядоченно, а хаотически. Звук, издаваемый струной, или любая другая нота, которую слышит наше ухо, складывается из основного тона и других призвуков — звуков меньшей интенсивности, которые называются обертонами. Нота, которую мы слышим, — это составной звук, но основной тон и все обертоны являются чистыми звуками. Из множества обертонов, составляющих звук, человеческое ухо улавливает всего 16.

Том 12. Числа-основа гармонии. Музыка и математика - _234.jpg

На схеме изображена струна, частоты колебаний которой соответствуют первым обертонам.

Если на музыкальном инструменте исполняется нота до, то ряд из шестнадцати обертонов, воспринимаемых человеческим ухом, для этого звука будет выглядеть следующим образом:

Том 12. Числа-основа гармонии. Музыка и математика - _235.jpg

В таблице приведены частоты различных обертонов. Например, 5-й обертон соответствует звуку, частота которого в пять раз больше частоты основного тона в 33 Гц: 33·5 = 165 Гц.

В музыкальной нотации 16 обертонам соответствуют следующие ноты:

Том 12. Числа-основа гармонии. Музыка и математика - _236.jpg
Консонанс и диссонанс

Звуки, воспроизводимые одновременно, могут восприниматься как благозвучные (в этом случае имеет место консонанс) или неблагозвучные, напряженные (мы называем их диссонирующими). В главе 1 мы рассказали о том, что пифагорейцы считали причиной благозвучия или неблагозвучия особое соотношение длин струн, издававших эти звуки. Иными словами, для пифагорейцев согласованность звуков определялась соотношением их частот. Пифагорейцы считали октаву (она разделяет два звука, исполняемые на струнах, соотношение длин которых 1:2), квинту (соотношение длин струн для нее 2:3) и кварту (3:4) благозвучными. Другие интервалы, производные от трех основных, оказывались диссонирующими, так как соотношения частот для соответствующих звуков выражались сложными числами. На следующих иллюстрациях указаны основные интервалы и соотношения частот звуков, соответствующих границам этих интервалов:

Том 12. Числа-основа гармонии. Музыка и математика - _237.jpg

Среди многочисленных гипотез, возникших в то время, особенный интерес представляет теория, согласно которой степень созвучности двух звуков тем больше, чем больше общих обертонов они имеют.

Запись времени на партитуре

Рассуждения о сути ритма (см. главу 2) позволили нам выделить различные свойства, описывающие чередование нот и пауз. Это дало возможность точнее записывать музыкальные произведения.

В физике время часто отображается на горизонтальной оси координат. Например, при построении графика положения тела при свободном падении высота обычно отображается на вертикальной оси (Y), время — на горизонтальной (X). Полученный график положения тела будет выглядеть так:

Том 12. Числа-основа гармонии. Музыка и математика - _238.jpg

График движения тела при свободном падении.

Аналогичным образом время представляется и в музыке:

Том 12. Числа-основа гармонии. Музыка и математика - _239.jpg

Нотная запись читается слева направо подобно тому, как читаются тексты, написанные на западных языках. Музыкальные ритмы изображаются в виде последовательности нот на горизонтальной оси.

Музыка и символы музыкальной нотации

Чтобы понять систему нотной записи, необходимо определить характеристики звуков, которые мы будем изображать.

Во-первых, следует рассмотреть наличие и отсутствие звука. В нотной записи должен отражаться как сам звук, так и паузы между звуками.

Во-вторых, звуки образуются в результате некоего движения, они имеют начало и конец.

Ноты и паузы — это символы, обозначающие наличие и отсутствие звука соответственно. Они же обозначают длительность звуков относительно других звуков и пауз.

Ноты

Перейти на страницу:

Арбонес Хавьер читать все книги автора по порядку

Арбонес Хавьер - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки mybrary.info.


Том 12. Числа-основа гармонии. Музыка и математика отзывы

Отзывы читателей о книге Том 12. Числа-основа гармонии. Музыка и математика, автор: Арбонес Хавьер. Читайте комментарии и мнения людей о произведении.


Уважаемые читатели и просто посетители нашей библиотеки! Просим Вас придерживаться определенных правил при комментировании литературных произведений.

  • 1. Просьба отказаться от дискриминационных высказываний. Мы защищаем право наших читателей свободно выражать свою точку зрения. Вместе с тем мы не терпим агрессии. На сайте запрещено оставлять комментарий, который содержит унизительные высказывания или призывы к насилию по отношению к отдельным лицам или группам людей на основании их расы, этнического происхождения, вероисповедания, недееспособности, пола, возраста, статуса ветерана, касты или сексуальной ориентации.
  • 2. Просьба отказаться от оскорблений, угроз и запугиваний.
  • 3. Просьба отказаться от нецензурной лексики.
  • 4. Просьба вести себя максимально корректно как по отношению к авторам, так и по отношению к другим читателям и их комментариям.

Надеемся на Ваше понимание и благоразумие. С уважением, администратор mybrary.info.


Прокомментировать
Подтвердите что вы не робот:*