Mybrary.info
mybrary.info » Книги » Научно-образовательная » Математика » У интуиции есть своя логика. Гёдель. Теоремы о неполноте. - Коллектив авторов (читать книги онлайн бесплатно полностью без сокращений txt) 📗

У интуиции есть своя логика. Гёдель. Теоремы о неполноте. - Коллектив авторов (читать книги онлайн бесплатно полностью без сокращений txt) 📗

Тут можно читать бесплатно У интуиции есть своя логика. Гёдель. Теоремы о неполноте. - Коллектив авторов (читать книги онлайн бесплатно полностью без сокращений txt) 📗. Жанр: Математика / Научпоп. Так же Вы можете читать полную версию (весь текст) онлайн без регистрации и SMS на сайте mybrary.info (MYBRARY) или прочесть краткое содержание, предисловие (аннотацию), описание и ознакомиться с отзывами (комментариями) о произведении.
Перейти на страницу:
ГИББСОВСКАЯ ЛЕКЦИЯ

Хотя после 1950 года Гёдель публиковался очень мало, это не значит, что он перестал размышлять и писать. Ученый оставил внушительное число неизданных рукописей, посвященных в основном философии и теологии, с исследованиями, среди прочего, на тему существования Бога, переселения душ и анализа философских работ Готфрида Лейбница. Все эти рукописи — поскольку Гёдель не оставил инструкций о том, что делать с ними, — были унаследованы его супругой Аделью, которая, в свою очередь, перед смертью в 1981 году передала их библиотеке Института перспективных исследований, где они и хранятся.

Среди неизданных бумаг выделяется текст Гиббсовской лекции, которую Гёделя пригласили прочитать на ежегодной встрече Американского математического общества, состоявшейся в Провиденсе 26 декабря 1951 года. По свидетельствам, Гёдель ограничился тем, что быстро прочел подготовленную заранее рукопись и даже не предоставил права на вопросы и комментарии в конце, хотя его встречали громкими аплодисментами, вызванными редкой возможностью лично увидеть гения такого уровня.

В последующие годы Гёдель занимался тем, что исправлял и завершал рукопись с намерением опубликовать ее, однако ему так и не удалось придать ей форму, которая удовлетворяла бы его самого. В конце концов лекция была опубликована в 1994 году как часть сборника под названием "Курт Гёдель, неизданные очерки".

Чем так интересна Гиббсовская лекция? В ней Гёдель очень детально (больше, чем в любой другой своей работе) изложил собственное понимание философских следствий из своих теорем о неполноте. В этой лекции он утверждал: теоремы доказывают, что математический платонизм — правильная позиция философии математики.

Вопрос состоит в следующем: математика создается или открывается? Это человеческое творение, или ученые открывают факты, существующие во внешней реальности независимо от них?

Платонизм утверждает, что математические объекты имеют объективное существование, и работа ученых состоит в том, чтобы открывать характеристики этих объектов. Платон был уверен, что наши ощущения — только деформированное отражение высшей действительности, существующей в "мире идей". В этом самом мире живут и объекты, исследуемые математиками.

Знаменитая теорема Гёделя о неполноте показывает, что нет никаких формальных [синтаксических] методов доказательства, с помощью которых можно доказать все математические истины.

Уиллард ван Орман Куайн о теореме Гёделя

Противоположная позиция, которая обычно называется формализмом и в которой собраны некоторые идеи интуиционизма и программы Гильберта, утверждает, что математика — это творение человека, подобное музыке. С этой точки зрения математика — лингвистическая (синтаксическая) игра, в которой есть некоторые отправные точки (аксиомы) и логические правила, позволяющие осуществлять операции на их основе. Работа ученого состоит в том, чтобы открыть, куда нас заведут правила игры (что, по сути, не сильно отличается от работы шахматиста, который ищет оптимальный ход в определенной позиции). Если, согласно платонизму, математические объекты существуют сами по себе, а ученые открывают их свойства, то формализм утверждает обратное: математические объекты и их свойства существуют лишь благодаря ученым. У обеих позиций есть сильные и слабые стороны, и они существуют в математической мысли параллельно друг другу. Современный философ математики Джон Барроу пишет: "Математики — формалисты с понедельника по пятницу и платонисты по выходным".

То есть для повседневной работы, для доказательства теорем и написания статей формалистская позиция является более подходящей, поскольку в конечном счете любая истина основывается на аксиомах, выбор которых не нуждается в дальнейших подтверждениях (в формализме требуется только, чтобы аксиомы были непротиворечивыми, но они не обязаны отражать внешнюю истинность). Однако по выходным, когда математики расслабляются, они чувствуют, что работают с "истинными объектами", существование которых независимо и реально (что бы это ни означало).

Обе позиции четко разделены в отношении вопроса континуум-гипотезы. В предыдущей главе мы увидели, что континуум-гипотеза (СН) неразрешима относительно аксиом теории множеств. Так истинна она или ложна? Для чистого формалиста (хотя сегодня таких почти не существует) ответ не имеет смысла. Аксиомы — это правила игры, выбранные произвольно, не отражающие никакую внешнюю "истинность"; существуют только синтаксические понятия "доказуемого" и "недоказуемого", а не понятия "истинности" или "ложности". Согласно этой точке зрения так же законно добавить в теорию множеств новую аксиому, при которой СН будет доказуема, как и добавить другую аксиому, при которой она будет опровергнута. Две различные теории множеств могут существовать параллельно друг другу так же, как одновременно существуют различные виды шахмат (например, китайские и японские), которые допускают варианты правил игры, и нет необходимости думать, что существуют "истинные" шахматы.

Для платонизма, наоборот, аксиомы теории множеств отражают истину, которая существует объективно и в которой СН либо истинна, либо ложна, и не хватает всего лишь аксиомы, которая позволила бы решить вопрос.

Гёдель был убежденным платонистом и в статье, опубликованной в 1947 году под названием "Что представляет собой проблема континуума Кантора?", писал: "Следует отметить [...], что с точки зрения, принятой здесь, доказательство неразрешимости гипотезы Кантора на основе аксиом, принятых в теории множеств, [...] в какой-то степени решило бы проблему. Итак, если принять, что значение первичных символов теории множеств [...] корректно, то понятия и теоремы теории множеств описывали бы некую точно определенную действительность, в которой гипотеза Кантора должна была бы быть истинной или ложной". Позже, в 1963 году, дополнив доказательство о неразрешимости СН, Пол Коэн согласился с этой точкой зрения и рискнул предположить, что гипотеза Кантора на самом деле ложна.

ЕСТЬ ЛИ ИСТИННЫЕ ШАХМАТЫ?

Китайские шахматы — стратегическая игра из той же серии, что и западные шахматы и сёги (японские шахматы). Считается, что все они происходят от игры под названием чатуранга, зародившейся в Индии в VI веке. Для формалистов (которые подчеркивают синтаксические аспекты математики) выбор аксиом для математической теории не сильно отличается от определения правил настольной игры. Западные, китайские или японские шахматы — родственные настольные игры, но среди них нет "истинной" и "ложных". Подобно этому, поскольку континуум-гипотеза (СН) неразрешима относительно аксиом теории множеств, можно добавить СН или ее отрицание в качестве новой аксиомы. В обоих случаях получаются разные теории множеств (разные правила игры), и нельзя сказать, что одна из них истинная, а другая ложная. Для платонистов, наоборот, теория множеств относится к объективной действительности, в которой континуум-гипотеза на самом деле истинна или ложна.

У интуиции есть своя логика. Гёдель. Теоремы о неполноте. - img_67.jpg

Доска китайских шахмат с исходной позицией фигур.

У интуиции есть своя логика. Гёдель. Теоремы о неполноте. - img_68.jpg

РИС. 1

Как мы уже сказали, на Гиббсовской лекции 1951 года Гёдель утверждал, что его теоремы о неполноте доказывают справедливость платонистической точки зрения.

Рассмотрим кратко аргументацию Гёделя. В разуме каждого из нас есть интуитивное представление о том, что такое натуральные числа. Мы понимаем, как определяются основные операции и каковы их основные свойства. Например, мы воспринимаем, что умножение 8 на 5 равносильно физической операции образования восьми столбиков с пятью объектами в каждом из них (рисунок 1).

Перейти на страницу:

Коллектив авторов читать все книги автора по порядку

Коллектив авторов - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки mybrary.info.


У интуиции есть своя логика. Гёдель. Теоремы о неполноте. отзывы

Отзывы читателей о книге У интуиции есть своя логика. Гёдель. Теоремы о неполноте., автор: Коллектив авторов. Читайте комментарии и мнения людей о произведении.


Уважаемые читатели и просто посетители нашей библиотеки! Просим Вас придерживаться определенных правил при комментировании литературных произведений.

  • 1. Просьба отказаться от дискриминационных высказываний. Мы защищаем право наших читателей свободно выражать свою точку зрения. Вместе с тем мы не терпим агрессии. На сайте запрещено оставлять комментарий, который содержит унизительные высказывания или призывы к насилию по отношению к отдельным лицам или группам людей на основании их расы, этнического происхождения, вероисповедания, недееспособности, пола, возраста, статуса ветерана, касты или сексуальной ориентации.
  • 2. Просьба отказаться от оскорблений, угроз и запугиваний.
  • 3. Просьба отказаться от нецензурной лексики.
  • 4. Просьба вести себя максимально корректно как по отношению к авторам, так и по отношению к другим читателям и их комментариям.

Надеемся на Ваше понимание и благоразумие. С уважением, администратор mybrary.info.


Прокомментировать
Подтвердите что вы не робот:*