Mybrary.info
mybrary.info » Книги » Научно-образовательная » Математика » Истина в пределе. Анализ бесконечно малых - Дуран Антонио (книги онлайн без регистрации .TXT) 📗

Истина в пределе. Анализ бесконечно малых - Дуран Антонио (книги онлайн без регистрации .TXT) 📗

Тут можно читать бесплатно Истина в пределе. Анализ бесконечно малых - Дуран Антонио (книги онлайн без регистрации .TXT) 📗. Жанр: Математика / Научпоп. Так же Вы можете читать полную версию (весь текст) онлайн без регистрации и SMS на сайте mybrary.info (MYBRARY) или прочесть краткое содержание, предисловие (аннотацию), описание и ознакомиться с отзывами (комментариями) о произведении.
Перейти на страницу:

Ключевую роль сыграли работы по решению задач поиска кривой по заданной касательной, которыми Лейбниц занимался в октябре 1675 года. За год до этого он решил задачу определения кривой по известной поднормали.

В рукописи, датируемой 29 октября 1675 года, Лейбниц ввел знак ∫ — стилизованную букву S, первую букву латинского слова summa для обозначения суммы бесконечно малых. До этого использовалась аббревиатура omn. — от латинского de omnium («все»), введенная Кавальери. Лейбниц писал: «Будет удобно записывать omn. как ∫, так что ∫l = omn.l, то есть сумма l».

Далее в этой же рукописи он вводит букву d для обозначения дифференциала.

Изначально он поместил это обозначение в знаменатель: «Это получается обратным расчетом. То есть допустим, что ∫l = уа, где l = ya/d. Тогда с ростом ∫d будет уменьшаться в размерах. Однако ∫ означает сумму, a d — разность».

Спустя несколько дней в рукописи, датированной 11 ноября 1675 года, он переместил d в числитель и записал — как dx. В этой же рукописи Лейбниц задается вопросом о равенстве d(xy) и dxdy, а также

Истина в пределе. Анализ бесконечно малых - i_057.png

Он делает вывод, что равенство между ними не выполняется, однако не приводит верных формул для нахождения дифференциала произведения и частного.

Чтобы увидеть нечто общее среди беспорядочного множества результатов, полученных его предшественниками при решении задач о квадратурах, центрах тяжести, касательных, задач нахождения кривой по заданной касательной и других, и сформулировать понятия интегрирования и дифференцирования, требовался алгебраический язык. Этот язык Лейбниц в совершенстве освоил во время работы над решением уравнений, проведенной за несколько месяцев вплоть до октября 1675 года. Следует отметить, что Лейбниц не преуспел в решении уравнений, однако освоил язык алгебры, без которого не смог бы впоследствии открыть свой метод математического анализа.

Истина в пределе. Анализ бесконечно малых - i_058.png
Дом, в котором жил Лейбниц во время пребывания в Ганновере.

Лейбниц сообщил основу своего метода Ньютону в ответ на его письма, переданные через Ольденбурга в июне и октябре 1676 года. Эта переписка Ньютона и Лейбница впоследствии сыграла решающую роль в споре о том, кто же первым создал анализ бесконечно малых. Как мы уже говорили, Ньютон отправил Лейбницу два письма: так называемое Epistolae prior, датированное 13 июня 1676 года, и Espistolae posterior, датированное 24 октября 1676 года. Ответы Лейбница датируются 17 августа 1676 года и 11—12 июня 1677 года. Они не озаглавлены, но их значение не менее масштабно. В своих письмах Ньютон излагает Лейбницу большую часть De analysi и De methodis о разложении в ряд, но почти не упоминает о своей версии анализа бесконечно малых. Лейбниц же в своих письмах излагает свой метод полностью. Ньютону следовало понять, что метод Лейбница столь же полон, как и его собственный, и вовремя опубликовать свои труды, чтобы доказать свое первенство. Вестфолл пишет: «Можно лишь предполагать, каковы были бы возможные последствия этого шага, но можно с уверенностью сказать, что в этом случае обе стороны не запятнали бы себя позорными поступками, которые в итоге совершили». Валлис чрезвычайно проницательно заметил: «По моему мнению, господину Ньютону следует усовершенствовать свою нотацию и незамедлительно опубликовать эти письма [имеются в виду два Epistolae]».

Годы, проведенные в Париже, стали для Лейбница непростыми. После смерти курфюрста Майнца в феврале 1673 года и изменений в ходе военных действий между Францией и Голландией политическая и дипломатическая миссия Лейбница потеряла смысл. Лейбниц опасался, что ему прикажут вернуться в Германию. Однако его новый покровитель предложил ему остаться в Париже и продолжать работу.

Лейбниц предпринял несколько неудачных попыток получить должность во французской столице. Ему не удалось получить пост дипломата (этому помешало его происхождение), а также не удалось занять оплачиваемый пост во Французской академии наук, где он представил свою вычислительную машину в начале 1675 года. (К сожалению для него, оплачиваемые должности уже занимали Гюйгенс и Кассини, и Академия не могла принять еще одного иностранца.) Несмотря на то что Лейбниц в течение всей второй половины того года использовал все свои многочисленные связи, попытка получить должность заведующего кафедрой в Коллеж де Франс после смерти Роберваля также окончилась неудачей. Шло время, но единственное предложение, которое ему поступило, — это приглашение на службу к графу Иоганну Фридриху, курфюрсту Ганновера. Лейбниц в конце концов принял предложение, но это означало, что ему придется вернуться в Ганновер, жить вдали от главных научных центров того времени и полностью зависеть от курфюрста, рискуя потерять должность в любой момент. Ему удалось продлить свое пребывание в Париже, насколько это было возможно — сначала до мая 1676 года, затем до октября. 4 октября он оставил Париж и направился в Германию, где его ждала должность библиотекаря в Ганновере. К работе следовало приступить в январе. Он больше никогда не возвращался в город, где в условиях величайшего давления, обеспокоенный будущей карьерой, он открыл анализ бесконечно малых.

По пути в Ганновер Лейбниц посетил Лондон и Амстердам. В Лондоне он пробыл десять дней и нанес визит Коллинзу. Вестфолл пишет: «Находясь под впечатлением от визитера, Коллинз открыл перед ним свой архив». Лейбниц, помимо прочих трудов, ознакомился с «Анализом» Ньютона и сделал некоторые пометки, касавшиеся разложения в ряд. Вновь приведем цитату Вестфолла: «Он увидел, что в этой области он может многому научиться у британских математиков. Отсутствие пометок, касающихся анализа флюксий, означает, что он не увидел в книге Ньютона ничего такого, о чем не знал бы сам. После отъезда Лейбница Коллинз вернулся к реальности и осознал, насколько опрометчиво поступил. Он никогда не рассказывал Ньютону о том, что показал Лейбницу его труды… Лейбниц, в свою очередь, также предпочел не упоминать об этом».

Позднее Лейбниц предпочел умолчать не только об этом, но и о других вещах, которые он узнал по дороге в Германию. В Амстердаме он в течение месяца несколько раз встретился с философом Бенедиктом Спинозой и ознакомился с частью рукописи его «Этики». Позднее Лейбниц отрицал идеи Спинозы (на момент визита Спинозе, которому оставался всего год до смерти, наскучило всякое общество) и предпочел не упоминать о том, как много он узнал во время бесед с ним, и также отказывался признавать значительное влияние «Этики» на свои философские взгляды.

Когда 25 лет спустя начался спор о том, кто же первым открыл математический анализ, решающую роль сыграло то, что Лейбниц увидел в Лондоне.

Истина в пределе. Анализ бесконечно малых - i_059.jpg
Портрет Бенедикта Спинозы. Доктрина этого философа, жившего в изгнании, оказала огромное влияние на многих философов, среди которых был и Лейбниц.

В 1677 году, уже будучи в Ганновере, Лейбниц получил правильные формулы для вычисления дифференциала произведений, дробей и степеней. Эти формулы он вывел не без труда, путем проб и ошибок.

В 1680 году он практически завершил работу над своим методом анализа и, в отличие от Ньютона, который не горел желанием отдавать рукописи в печать, опубликовал первую статью по этой теме в 1684 году. Эта статья стала первой в истории публикацией, посвященной анализу бесконечно малых. Она имела внушительное заглавие «Новый метод максимумов и минимумов, а также касательных, для которого не являются препятствием ни дробные, ни иррациональные величины, и особый для этого род исчисления». В этой статье объемом всего в шесть страниц крайне схематично, без доказательств и практически без примеров было изложено дифференциальное исчисление Лейбница. Эта работа была сложной и непонятной, «скорее, загадка, нежели объяснение», как отзывались о ней братья Бернулли, которые первыми изучили математический анализ Лейбница. Сложность статьи усугублялась опечатками, допущенными при публикации.

Перейти на страницу:

Дуран Антонио читать все книги автора по порядку

Дуран Антонио - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки mybrary.info.


Истина в пределе. Анализ бесконечно малых отзывы

Отзывы читателей о книге Истина в пределе. Анализ бесконечно малых, автор: Дуран Антонио. Читайте комментарии и мнения людей о произведении.


Уважаемые читатели и просто посетители нашей библиотеки! Просим Вас придерживаться определенных правил при комментировании литературных произведений.

  • 1. Просьба отказаться от дискриминационных высказываний. Мы защищаем право наших читателей свободно выражать свою точку зрения. Вместе с тем мы не терпим агрессии. На сайте запрещено оставлять комментарий, который содержит унизительные высказывания или призывы к насилию по отношению к отдельным лицам или группам людей на основании их расы, этнического происхождения, вероисповедания, недееспособности, пола, возраста, статуса ветерана, касты или сексуальной ориентации.
  • 2. Просьба отказаться от оскорблений, угроз и запугиваний.
  • 3. Просьба отказаться от нецензурной лексики.
  • 4. Просьба вести себя максимально корректно как по отношению к авторам, так и по отношению к другим читателям и их комментариям.

Надеемся на Ваше понимание и благоразумие. С уважением, администратор mybrary.info.


Прокомментировать
Подтвердите что вы не робот:*