Mybrary.info
mybrary.info » Книги » Научно-образовательная » Математика » Том 12. Числа-основа гармонии. Музыка и математика - Арбонес Хавьер (читать книги онлайн полностью без регистрации .txt) 📗

Том 12. Числа-основа гармонии. Музыка и математика - Арбонес Хавьер (читать книги онлайн полностью без регистрации .txt) 📗

Тут можно читать бесплатно Том 12. Числа-основа гармонии. Музыка и математика - Арбонес Хавьер (читать книги онлайн полностью без регистрации .txt) 📗. Жанр: Математика. Так же Вы можете читать полную версию (весь текст) онлайн без регистрации и SMS на сайте mybrary.info (MYBRARY) или прочесть краткое содержание, предисловие (аннотацию), описание и ознакомиться с отзывами (комментариями) о произведении.
Перейти на страницу:

Седьмой лад состоит из двух групп по шесть звуков (полутон — полутон — полутон — тон — полутон) и допускает шесть транспозиций.

Том 12. Числа-основа гармонии. Музыка и математика - _169.jpg
Математика музыкальной формы

Симметрия наблюдается не только в музыкальных фразах и мотивах. Более сложные музыкальные структуры также могут обладать интересными математическими свойствами.

В формальном анализе музыкальных произведений изучается «музыкальная плоскость» — иными словами, составные части произведения и взаимосвязи между ними. Так как «музыкальную плоскость» можно изображать с разной степенью точности, в зависимости от «масштаба» можно получить общее представление, не содержащее нюансов, либо, напротив, в подробностях увидеть все детали, но не все произведение в целом.

ABCDE…

Рассмотрим музыкальные произведения издалека. Мы увидим крупные структуры, которые будем обозначать заглавными латинскими буквами. Здесь в качестве структурных элементов композиции мы будем рассматривать повторяющиеся или изменяющиеся фрагменты произведения. Композицию, в которой полностью повторяется единственная группа, будем обозначать так:

Том 12. Числа-основа гармонии. Музыка и математика - _170.jpg

Такие композиции обладают простой симметрией. Произведение, состоящее из двух полностью различных групп, напротив, не обладает какой-либо симметрией:

Том 12. Числа-основа гармонии. Музыка и математика - _171.jpg

Существуют ли произведения, симметричные с формальной точки зрения? Да, такие произведения существуют, более того, они встречаются очень часто. Примером может служить скерцо («игра») — произведение, которое обычно является частью другого, более крупного произведения, например симфонии. В качестве примера можно привести скерцо из Девятой симфонии Бетховена или скерцо из Симфонии № 4 Чайковского. По своей сути скерцо имеет вид АВ. Иногда после исполнения второй части первая повторяется заново, и композиция принимает вид:

Том 12. Числа-основа гармонии. Музыка и математика - _172.jpg

Это простейшая симметричная фигура. Части этой композиции могут повторяться и далее, образуя различные симметричные структуры:

Том 12. Числа-основа гармонии. Музыка и математика - _173.jpg

Также существуют сложные формы, состоящие из трех частей, каждая из которых также делится на три части. В результате образуются более крупные симметричные структуры:

Том 12. Числа-основа гармонии. Музыка и математика - _174.jpg

Некоторые короткие произведения, например вальс ор. 34 № 1 Фредерика Шопена (1810–1849), обладают еще более широкой симметрией:

Том 12. Числа-основа гармонии. Музыка и математика - _175.jpg

Чем длиннее произведение, тем меньше вероятность наличия подобной симметрии. «Музыкальное приношение» Баха обладает формальной симметрией следующего вида:

Том 12. Числа-основа гармонии. Музыка и математика - _176.jpg

Месса си минор Баха

Иоганн Себастьян Бах, самый изобретательный композитор всех времен, использовал в своих произведениях структуры, обладающие символическими и математическими свойствами. Его Месса си минор (Высокая месса) BWV 232, состоит из 27 частей, объединенных в четыре группы: Kyrie, Gloria, Credo и финальную, включающую в числе прочих части Sanctus, Hosanna, Benedictus и Agnus Dei. Композитор хотел изобразить Святую Троицу как в музыке, так и в числах.

Число 3 обозначает Святую Троицу. Общее число частей произведения (27), а также число частей в каждой группе (3 + 9 + 9 + 6) делится на три. Две центральных группы (Gloria и Credo) имеют симметричную структуру. Центр симметрии Gloria расположен в хоре Domine Deus («Господи Боже»). Центр симметрии Credo — в Crucifixus («Распятье»):

—Kyrie

 Kyrie eleison (№ 1).

 Christe eleison.

 Kyrie eleison (№ 2).

 —Gloria

 Gloria in excelsis Deo.

 Et in terra pax.

 Laudamus te.

 Gratias agimus tibi.

 Domine Deus. <—

 Qui tollis peccata mundi.

 Qui sedes ad dexteram Patris.

 Quoniam tu solus sanctus.

 Cum Sancto Spiritu.

 —Credo

 Credo in unum Deum.

 Patrem omnipotentem.

 Et in unum Dominum.

 Et incarnatus est.

 Crucifixus. <—

 Et resurrexit.

 Et in Spiritum Sanctum.

 Confiteor.

 Et expecto.

 —Sanctus, Hosanna, Benedictus, Agnus Dei

Sanctus.

 Hosanna.

 Benedictus.

 Hosanna (da capo).

 Agnus Dei.

 Dona nobis pacem.

В частности, три центральных элемента группы Credo рассказывают о жизни Христа, начиная от воплощения (Et incarnatus est) до воскрешения (Et resurrexit), центральная часть повествует о распятии (Crucifixus).

* * *

МУЗЫКАЛЬНЫЕ КРИПТОГРАММЫ

Криптограмма — сообщение, которое нельзя прочитать, не зная ключа шифра. Это сообщение может быть спрятано внутри рисунка, в тексте или посреди беспорядочно расположенных цифр и букв. Музыкальная криптограмма — это произведение, в котором зашифрован текст. Чтобы прочитать его, необходимо всего лишь записать обозначения всех его нот. Многие композиторы создавали произведения, следуя такой системе. Наиболее известной музыкальной криптограммой, вне всякого сомнения, является В-А-С-Н, в которой используется классическая немецкая нотация. В этой нотации си-бемоль обозначается буквой В, ля — буквой А, до — буквой С, си — буквой Н.

Другими известными криптограммами являются:

— ABEGG в честь Meta Abegg в «Вариациях на тему Abegg» Роберта Шумана;

— CAGE в честь Джона Кейджа. Этот мотив использовала Полина Оливейрос;

— GADE в честь Нильса Гаде. Этот мотив использовал Роберт Шуман.

Антон Веберн в своем Струнном квартете, соч. 28 использовал четыре ноты В-А-С-Н и два геометрических преобразования, с помощью которых превратил эти четыре ноты в восемь.

Австрийский композитор Альбан Берг (1885–1935) в своей опере «Воццек» отдает дань уважения трем ведущим представителям венской школы, зашифровав текст в партитуре для каждого инструмента:

— пианино: Арнольд Шёнберг (ADSCHBEG);

— скрипка: Антон Веберн (АЕВЕ);

— труба: Альбан Берг (ABABEG).

* * *

Золотое сечение и музыка

Итальянский математик Леонардо Пизанский, известный как Фибоначчи (ок. 1170 — ок. 1250), был одним из тех, кто ввел в употребление арабские цифры в Европе. В своей «Книге абака» он изложил задачу:

Перейти на страницу:

Арбонес Хавьер читать все книги автора по порядку

Арбонес Хавьер - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки mybrary.info.


Том 12. Числа-основа гармонии. Музыка и математика отзывы

Отзывы читателей о книге Том 12. Числа-основа гармонии. Музыка и математика, автор: Арбонес Хавьер. Читайте комментарии и мнения людей о произведении.


Уважаемые читатели и просто посетители нашей библиотеки! Просим Вас придерживаться определенных правил при комментировании литературных произведений.

  • 1. Просьба отказаться от дискриминационных высказываний. Мы защищаем право наших читателей свободно выражать свою точку зрения. Вместе с тем мы не терпим агрессии. На сайте запрещено оставлять комментарий, который содержит унизительные высказывания или призывы к насилию по отношению к отдельным лицам или группам людей на основании их расы, этнического происхождения, вероисповедания, недееспособности, пола, возраста, статуса ветерана, касты или сексуальной ориентации.
  • 2. Просьба отказаться от оскорблений, угроз и запугиваний.
  • 3. Просьба отказаться от нецензурной лексики.
  • 4. Просьба вести себя максимально корректно как по отношению к авторам, так и по отношению к другим читателям и их комментариям.

Надеемся на Ваше понимание и благоразумие. С уважением, администратор mybrary.info.


Прокомментировать
Подтвердите что вы не робот:*