Mybrary.info
mybrary.info » Книги » Научно-образовательная » Математика » Том 9. Загадка Ферма. Трехвековой вызов математике - Виолант-и-Хольц Альберт (бесплатные онлайн книги читаем полные txt) 📗

Том 9. Загадка Ферма. Трехвековой вызов математике - Виолант-и-Хольц Альберт (бесплатные онлайн книги читаем полные txt) 📗

Тут можно читать бесплатно Том 9. Загадка Ферма. Трехвековой вызов математике - Виолант-и-Хольц Альберт (бесплатные онлайн книги читаем полные txt) 📗. Жанр: Математика. Так же Вы можете читать полную версию (весь текст) онлайн без регистрации и SMS на сайте mybrary.info (MYBRARY) или прочесть краткое содержание, предисловие (аннотацию), описание и ознакомиться с отзывами (комментариями) о произведении.
Перейти на страницу:
Том 9. Загадка Ферма. Трехвековой вызов математике - _49.jpg

Графическое представление арабской задачи о жемчужинах

(источник: Мальба Тахан. Человек, который считал).

* * *

«Арифметика» Диофанта

О жизни Диофанта практически ничего не известно. В точности неизвестны даже годы его жизни. Однако до нас дошли несколько дат. С одной стороны, Диофант цитирует Гипсикла, давая определение фигурных чисел, следовательно, его труд был написан позднее 150 года до н. э. С другой стороны, Теон Александрийский, отец Гипатии, приводит в своих трудах одно из определений Диофанта, откуда следует, что «Арифметика» было написана до 350 года н. э. Следовательно, мы можем лишь утверждать, что даты рождения и смерти Диофанта находятся в границах этого периода длиной в 500 лет.

Точнее определить годы жизни Диофанта помогает письмо византийского автора XI века Михаила Пселла. В переводе с греческого письмо звучит так: «Диофант управлялся с ней (египетской арифметикой. — Примеч. автора) более умело, но образованный Анатолий объединил важнейшие части доктрины Диофанта, которую тот изложил разрозненно и сжато, и посвятил свой труд Диофанту». Пол Таннери опубликовал это письмо в одном из своих исследований и предположил, что Пселл ссылается на комментарий о Диофанте, источник которого был утерян. Возможно, он был написан Гипатией. Упоминаемый в письме Анатолий был епископом Лаодикеи, писателем и знатоком математики и жил в III веке н. э. Следовательно, можно предполагать, что Диофант написал «Арифметику» примерно в 250 году н. э. Однако не все исследователи согласны с этим переводом, поэтому предложенную дату нельзя считать окончательной.

Том 9. Загадка Ферма. Трехвековой вызов математике - _50.jpg

Обложка книги «Арифметика» Диофанта, напечатанной в Базеле в 1575 году.

Как и в случае с Ферма, точный возраст Диофанта можно определить по его эпитафии. Она содержится в «Греческой антологии», составленной Метродором примерно в 500 году и. э. Одна задача из этого собрания посвящена автору «Арифметики»:

«Прах  Диофанта  гробница  покоит;  дивись  ей  —  и  камень
Мудрым  искусством  его  скажет  усопшего  век.
Волей  богов  шестую  часть  жизни  он  прожил  ребенком.
И  половину  шестой  встретил  с  пушком  на  щеках.
Только  минула  седьмая,  с  подругой  он  обручился.
С  нею  пять  лет  проведя,  сына  дождался  мудрец;
Только  полжизни  отцовской  возлюбленный  сын  его  прожил.
Отнят  он  был  у  отца  ранней  могилой  своей.
Дважды  два  года  родитель  оплакивал  тяжкое  горе,
Тут  и  увидел  предел  жизни  печальной  своей».

(Перевод С.П. Боброва)

Если мы обозначим возраст Диофанта за х, то его детство длилось х/6 лет, он женился по прошествии х/7 лет, его борода росла х/12 лет. Его сын родился 5 лет спустя и прожил х/2 лет. Отец умер 4 года спустя после смерти сына. Получим:

хх/6 + х/7 + х/12 + 5 + х/2 + 4.

Умножив обе части равенства на 84, получим:

84х = 84· х/6 + 84·х/7 + 84·х/12 + 84·5 + 84·х/2 + 84·4.

Упростим равенство:

84х = 14х + 12х + 7х + 420 + 42х + 336.

Перенеся все члены с х в одну часть, получим:

84х — 14х — 12х — 7х — 42х = 420 + 336.

Отсюда 9х = 776, следовательно, х = 156/9 = 84. Таким образом, Диофант женился в 26 лет, сын родился, когда ему было 38 лет. Сын прожил 42 года — в два раза меньше, чем отец. Однако нам неизвестно, является эта задача полностью вымышленной или же, напротив, она основана на реальных событиях жизни математика.

* * *

КНИГИ «АРИФМЕТИКИ» ДИОФАНТА

«Арифметика» Диофанта состоит из 13 книг на греческом языке, из которых до нас дошли шесть. Кроме этого, в 1972 году обнаружилась арабская рукопись, включающая еще четыре книги, по содержанию не совпадающие с книгами, дошедшими до нас на греческом. В них описывается ряд задач по нахождению рациональных решений алгебраических уравнений с рациональными коэффициентами. Шесть книг на греческом содержат 189 задач. Они распределяются так:

Книга I: приведены 25 задач для уравнений первой степени и 14 — для второй степени.

Книга II состоит из 35 задач. Задача под номером 8, несомненно, самая известная из всех, так как именно она навела Ферма на мысль о его теореме.

Книга III содержит 21 задачу. Наиболее известной является 19-я, в которой впервые применяется геометрический метод решения.

Книга IV содержит 40 задач, в большинстве из них речь идет о кубах чисел.

Книга V содержит 30 задач. В 28 из них идет речь об уравнениях второй и третьей степени. Последняя, 30-я задача — это задача о смесях.

Книга VI содержит 24 задачи. Они посвящены поиску прямоугольных треугольников с рациональными сторонами.

Том 9. Загадка Ферма. Трехвековой вызов математике - _51.jpg

Обложка одного из изданий «Арифметики» Диофанта, опубликованного в 1670 году сыном Ферма уже после смерти отца. В это издание были включены комментарии, сделанные знаменитым математиком.

* * *

Важность «Арифметики»

Важность работы Диофанта сложно переоценить. Предложенные им задачи бросают вызов гениальности и творчеству и воспевают красоту математики. Хотя Диофант не применял сложные алгебраические обозначения, он ввел в употребление некоторые символы. Так, он обозначал сокращениями неизвестную и степени неизвестной. Это позволило упростить запись уравнений. Он также использовал сокращение, обозначавшее равенство. Поэтому его работа стала важным шагом в переходе от словесной к символьной алгебре.

Также очевидно, что Диофант уделял больше внимания частным, а не общим случаям. Очевидно, переход к общим случаям был слишком большим шагом вперед. Однако некоторые из методов Диофанта можно легко распространить на более общие случаи. Тем не менее, ему явно не хватало средств алгебраической нотации, чтобы записать более общие методы. Например, Диофант мог обозначать только одну неизвестную, и всякий раз, когда в решении появлялись различные неизвестные, он называл их «первая неизвестная», «вторая неизвестная», «третья неизвестная» и так далее. У него в распоряжении также не было символа для обозначения произвольного числа n, поэтому выражение (6+ 1)/(n2 + n) требовалось записывать словами:

«Число, умноженное на шесть и увеличенное на один, которое делится на сумму его квадрата и этого же числа». Нетрудно видеть, что записывать сложные выражения в подобном виде было непросто. Лишь Виет сделал решающий шаг к современной алгебраической нотации.

* * *

АЛГЕБРАИЧЕСКАЯ НОТАЦИЯ ВИЕТА

Сегодняшнюю математику нельзя представить без символьной нотации. Но она формировалась в течение многих тысяч лет. Буквенные обозначения в своих доказательствах использовали уже Диофант и Евклид, но окончательный переход к алгебраической нотации осуществил Виет. В своей книге In artem analyticem isagoge («Введение в аналитическое искусство»), написанной в 1591 году, Виет уделил особое внимание алгебраическим методам и привел их систематическое изложение. Его метод контрастировал с синтетическим методом, который использовали греки для доказательства теорем. Он применил новый подход к тому, что было известно на тот момент, и стремился, чтобы ни одна математическая задача не осталась нерешенной. Тот же Виет без тени сомнения утверждал, что благодаря алгебре будет возможно решить все задачи. Развитие математической нотации можно оценить на следующем примере. Здесь записан один и тот же многочлен в нотации Диофанта, нотации Виета и современным способом.

Способ записи Диофанта:

Перейти на страницу:

Виолант-и-Хольц Альберт читать все книги автора по порядку

Виолант-и-Хольц Альберт - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки mybrary.info.


Том 9. Загадка Ферма. Трехвековой вызов математике отзывы

Отзывы читателей о книге Том 9. Загадка Ферма. Трехвековой вызов математике, автор: Виолант-и-Хольц Альберт. Читайте комментарии и мнения людей о произведении.


Уважаемые читатели и просто посетители нашей библиотеки! Просим Вас придерживаться определенных правил при комментировании литературных произведений.

  • 1. Просьба отказаться от дискриминационных высказываний. Мы защищаем право наших читателей свободно выражать свою точку зрения. Вместе с тем мы не терпим агрессии. На сайте запрещено оставлять комментарий, который содержит унизительные высказывания или призывы к насилию по отношению к отдельным лицам или группам людей на основании их расы, этнического происхождения, вероисповедания, недееспособности, пола, возраста, статуса ветерана, касты или сексуальной ориентации.
  • 2. Просьба отказаться от оскорблений, угроз и запугиваний.
  • 3. Просьба отказаться от нецензурной лексики.
  • 4. Просьба вести себя максимально корректно как по отношению к авторам, так и по отношению к другим читателям и их комментариям.

Надеемся на Ваше понимание и благоразумие. С уважением, администратор mybrary.info.


Прокомментировать
Подтвердите что вы не робот:*