Мир математики. т.3. Простые числа. Долгая дорога к бесконечности - Грасиан Энрике (лучшие книги читать онлайн txt) 📗
е = 2,71882818284590452354…
Это бесконечное десятичное число появляется в математике примерно так же часто, как π. Логарифмы по основанию е называются «натуральными логарифмами».
По вышеприведенному определению, натуральные логарифмы следовало бы обозначать loge, однако на калькуляторах имеются две отдельные клавиши: log — для десятичных логарифмов, а In — для логарифмов по основанию е.
Таким образом, Гаусс сформулировал следующую гипотезу: при больших х значения π(x)/x приближаются к 1/ln x, что можно записать как
π(x)/x примерно = 1/ln x (для больших значений х).
Этот результат является оценкой частоты, с которой простые числа встречаются в последовательности натуральных чисел. Предположим, что Р(N) — число простых чисел, меньших N. Формула утверждает, что с ростом N отношение N/P(N) приближается к натуральному логарифму N.
Это самый простой способ применения формулы Гаусса, если мы хотим оценить, сколько существует простых чисел, меньших, чем заданное число. Например, нам задали следующий вопрос: «Сколько простых чисел в первой тысяче натуральных чисел?»
Возьмем калькулятор и выполним следующие действия:
1) наберем число 1000;
2) нажмем клавишу In;
3) нажмем клавишу 1/х;
4) умножим результат на 1000.
Мы получим число 144,76482730108394255037630630554, что позволит нам дать следующий ответ: «В первой тысяче натуральных чисел встречается примерно 145 простых чисел». Это, конечно, лишь приблизительная оценка, так как на самом деле в первой тысяче 168 простых чисел. Тем не менее, мы должны иметь в виду, что теорема дает все более точный результат при увеличении числа N, и уже с большей уверенностью мы можем сказать, что, например, в первом миллиарде 5,1 % натуральных чисел являются простыми.
Теперь мы можем расшифровать, что именно Гаусс имел в виду, когда оставил заметку в своей записной книжке:
«Простые числа, меньшие
«Простые числа, меньшие а» — то же самое, что и π(a);
«lа» в современных терминах записывается как In a
означает, что равенство наиболее верно для очень больших значений а (когда а стремится к бесконечности).* * *
КОЛОКОЛООБРАЗНАЯ КРИВАЯ ГАУССА
В возрасте 18 лет Гаусс открыл «метод наименьших квадратов», и это вызвало его особый интерес к теории ошибок. Он разработал метод статистического анализа, в котором нормальное распределение ошибок изображается колоколообразной кривой. Это, без сомнения, самая известная кривая в математике, и ее обычно называют «гауссовой кривой нормального распределения». Этот метод принес значительные доходы и самому Гауссу, когда он начал систематическое изучение тенденций международного фондового рынка. Эти данные печатались в зарубежных газетах, которые постоянно имелись в университетских холлах. Колоколообразная кривая очень пригодилась, и доход, который Гаусс имел от этих исследований, значительно превышал его профессорское жалованье.
МНОГОУГОЛЬНИК ГАУССА
Построение правильных многоугольников с помощью циркуля и линейки было одной из нерешенных задач еще со времен греческих геометров. Можно было построить лишь многоугольники с тремя, четырьмя, пятью и пятнадцатью сторонами, а также с их удвоенными количествами. 30 марта 1796 г. Гаусс нашел способ построения многоугольника с 17 сторонами. Этот день стал знаменательным днем его карьеры. Тогда же он начал вести научный дневник, охватывающий период 1796–1814 гг. Эти записи считаются в математике настоящим бриллиантом, потому что содержат все научные открытия Гаусса.
Однако, возможно, наиболее важным является то, что в тот день Гаусс решил посвятить себя математике, а не изучению языков и филологии, где также проявилась его гениальность.
* * *
В настоящее время этот результат известен как «теорема о распределении простых чисел» и является одним из самых важных в истории математики. Хаотическое множество простых чисел, казалось, удалось приручить. Появилась функция для их изучения, которая со временем привела к еще более точным результатам.
Гаусс не дожил до успеха своей теоремы. И это не связано с секретностью, как часто бывало с другими математиками. Не связано это и с подходом Ферма, который не приводил доказательств, ссылаясь на то, что они слишком длинные. У Гаусса хватило бы бумаги для любых доказательств, какими длинными они бы ни были.
Гаусс не дожил до успеха своей теоремы просто потому, что у него не было возможности ее доказать. Благодаря работам Эйлера математика поднялась на новый уровень, где теории формулировались в логической последовательности, оставив в прошлом неопределенные методы и сомнительные практики. Интуиция, являющаяся ключом к любым открытиям, должна была подкрепляться солидной теоретической основой. Доказательство теоремы стало объективным аргументом, который, благодаря простому языку чисел, приобретал статус истины.
Гипотеза Гаусса стала теоремой лишь век спустя: в 1896 г. Жак Адамар (1865–1963) и Шарль Жан Ла Валле Пуссен (1866–1962) одновременно, но независимо друг от друга доказали ее. Из всех теорем в теории простых чисел гипотеза Гаусса занимает особое место с точки зрения истории математики: не только из-за своей красоты, но и из-за огромного влияния, которое она оказала на методы исследований простых чисел.
Портрет Гаусса изображен на лицевой стороне немецкой банкноты 10 марок на фоне кривой, известной как колоколообразная кривая Гаусса. На обороте банкноты изображен секстант — инструмент, который использовался при создании одной из первых геодезических сетей в мире недалеко от Гамбурга, как показано в нижнем правом углу. Понятие «геодезических», то есть кратчайших линий, соединяющих две точки на поверхности, является ключевым понятием в геометрии и еще одним научным вкладом немецкого гения.
Глава 5
Краеугольные камни
В основе современной теории простых чисел лежат три краеугольных камня: модульная арифметика, комплексные числа и теория аналитических функций. Все они, а особенно последний, требуют существенных математических знаний. Однако некоторые аспекты теории чисел можно легко понять: например, визуализацию функций в четырехмерном пространстве. Это и поможет нам оценить роль дзета-функции Римана в наведении порядка в хаотической последовательности простых чисел.
Как известно, числа имеют особые символические значения, связанные с различными мистическими верованиями. В западном мире большинство таких символических значений имеет свои корни в Библии или в пифагорейской школе. «Все познаваемое имеет число. Ибо без него невозможно ничего ни понять, ни познать», — писал ученик Пифагора, греческий математик и философ Филолай из Кротона (ок. 480 г. дон. э.).
В эпоху мрачного средневековья передача «культуры чисел» свелась к минимуму. Католическая церковь провела четкое разграничение между различными философскими концепциями мира и теми неоспоримыми принципами, которые соответствовали ее учению. Лишь одной традиции удалось в некоторой степени преодолеть эту нетерпимость: картам Таро. Хотя церковь в конце концов осудила эту систему символов, нумерология Таро сохранилась во многих текстах, которые были настолько двусмысленными, что было неясно, идет там речь о гадании или об арифметике.