Mybrary.info
mybrary.info » Книги » Научно-образовательная » Математика » Мир математики. т.4. Когда прямые искривляются. Неевклидовы геометрии - Гомес Жуан (читать книги онлайн бесплатно полные версии txt) 📗

Мир математики. т.4. Когда прямые искривляются. Неевклидовы геометрии - Гомес Жуан (читать книги онлайн бесплатно полные версии txt) 📗

Тут можно читать бесплатно Мир математики. т.4. Когда прямые искривляются. Неевклидовы геометрии - Гомес Жуан (читать книги онлайн бесплатно полные версии txt) 📗. Жанр: Математика. Так же Вы можете читать полную версию (весь текст) онлайн без регистрации и SMS на сайте mybrary.info (MYBRARY) или прочесть краткое содержание, предисловие (аннотацию), описание и ознакомиться с отзывами (комментариями) о произведении.
Перейти на страницу:

Это можно доказать с помощью простых вычислений. Для простоты мы будем измерять расстояния в километрах. Возьмем выражение для длины окружности в виде степенного ряда. Пусть коэффициент k имеет значение = 1017, и мы хотим посчитать длину окружности радиуса 100 км.

Подставим эти значения в выражение

Мир математики. т.4. Когда прямые искривляются. Неевклидовы геометрии - _81.jpg

а также в евклидову формулу 2π·r, и мы увидим, что разница составляет лишь 10-9.

Если два значения длины окружности посчитать для радиуса в 1 км, разница будет порядка 10-12. Продолжим вычисления с меньшими значениями по мере того, как круг сжимается. Для радиуса в один метр разница составит примерно 10-15. Таким образом, мы показали, что при небольших размерах длина окружности в гиперболической геометрии приближается к длине окружности в геометрии Евклида. Такие же рассуждения можно применить и к формулам для площади треугольника.

* * *

РЯДЫ ТЕЙЛОРА

При определенных условиях можно записать следующее разложение в ряд:

Мир математики. т.4. Когда прямые искривляются. Неевклидовы геометрии - _82.jpg

Это выражение для е4 называется рядом Тейлора, в честь английского математика Брука Тейлора (1685–1713). Если у вас есть простейший калькулятор с четырьмя основными операциями (сложение, вычитание, умножение и деление), эта формула позволяет посчитать е в любой степени, просто подставив его значение вместо А, чем больше членов ряда будет посчитано, тем выше точность результата. Выражение n! означает произведение n·(n — 1)·(n — 2)·…·1 и читается как «n факториал». Например: 5! = 5 x 4 x 3 x 2 x 1 = 120.

Если выражение для ряда Тейлора применить к формуле длины гиперболической окружности

Мир математики. т.4. Когда прямые искривляются. Неевклидовы геометрии - _83.jpg

то мы получим:

Мир математики. т.4. Когда прямые искривляются. Неевклидовы геометрии - _84.jpg

где последний член очень мал и содержит в 11-й степени. Если в этом выражении вынести общий множитель С = 2·π·r за скобки, то мы получим следующую формулу:

Мир математики. т.4. Когда прямые искривляются. Неевклидовы геометрии - _85.jpg

* * *

Отношение n/k указывает на различие в свойствах фигур в гиперболической и евклидовой геометриях, где п означает размер фигуры (радиус окружности, длина стороны треугольника). Однако в астрономических масштабах отношение n/k нельзя не учитывать.

На самом деле результаты, о которых мы говорили, служат подтверждением того, что гиперболическая геометрия является обобщением евклидовой геометрии. Лобачевский особенно подчеркивал это свойство своей теории, назвав ее пангеометрией, то есть «универсальной геометрией».

Теорема Пифагора

Всегда полезно взглянуть на известные результаты через призму другой теории. Но именно в теореме Пифагора эффект новых геометрий наиболее заметен. В гиперболической геометрии теорема Пифагора играет столь же важную роль, как и в геометрии Евклида, и, как можно было ожидать, для небольших расстояний она ведет себя так же, как и другие гиперболические объекты. Другими словами, на небольших расстояниях она совпадает с евклидовой версией. Однако при увеличении расстояния ситуация меняется.

Рассмотрим гиперболический треугольник, стороны которого мы обозначим а, b и с, где с является гипотенузой; вершинами треугольника будут точки А, В и С. Форма гиперболического треугольника отличается от классической:

Мир математики. т.4. Когда прямые искривляются. Неевклидовы геометрии - _86.jpg

Для этого треугольника справедливо равенство

Мир математики. т.4. Когда прямые искривляются. Неевклидовы геометрии - _87.jpg

которое может быть переписано в терминах гиперболической геометрии как:

Мир математики. т.4. Когда прямые искривляются. Неевклидовы геометрии - _88.jpg

Раскладывая выражение

Мир математики. т.4. Когда прямые искривляются. Неевклидовы геометрии - _89.jpg
в степенной ряд, как мы это делали для формулы длины окружности, мы получим следующее равенство:

Мир математики. т.4. Когда прямые искривляются. Неевклидовы геометрии - _90.jpg

Отсюда видно, что в случае небольших сторон треугольника формула Пифагора остается в силе:

с2 = а2 + Ь2,

принимая традиционный вид, как в евклидовой геометрии.

* * *

ГИПЕРБОЛИЧЕСКИЕ ФУНКЦИИ

Гиперболические функции называются так потому, что по свойствам они напоминают классические тригонометрические функции. Они таким же образом связаны с гиперболой, как традиционные тригонометрические функции связаны с окружностью.

Мир математики. т.4. Когда прямые искривляются. Неевклидовы геометрии - _91.jpg

* * *

Все эти примеры говорят об общем результате, поэтому мы можем утверждать, что параллельные прямые на гиперболической плоскости в малых областях не отличаются от евклидовых параллельных прямых. С другой стороны, в этих вычислениях использовались гиперболические тригонометрические функции — особые аналоги традиционных функций синуса и косинуса. Они называются гиперболическим синусом и гиперболическим косинусом. Добро пожаловать в гиперболическую тригонометрию.

Гиперболическая тригонометрия

Работая над своими сложными математическими теориями, Бойяи и Лобачевский вывели тригонометрические выражения для гиперболической геометрии. Удивительным является тот факт, что, как и все остальное, они сделали это независимо друг от друга. Это свидетельствует об их гениальности, но также показывает, что результаты, которые они получили, действительно являются правильными.

Соотношения, выведенные Бойяи и Лобачевским, в малых областях могут быть сведены к формулам классической тригонометрии, но в других случаях они характеризуют новые, совершенно неисследованные миры.

Для переменной х гиперболический синус и гиперболический косинус определяются следующим образом:

Мир математики. т.4. Когда прямые искривляются. Неевклидовы геометрии - _92.jpg

Аналогично элементарной тригонометрии, гиперболический тангенс определяется следующей формулой:

th x = sh x/ch x

Здесь мы вкратце напомним так называемую теорему синусов.

В треугольнике со сторонами а, b и с и с углами А, В и С

Мир математики. т.4. Когда прямые искривляются. Неевклидовы геометрии - _93.jpg

справедливо следующее соотношение:

a/sin A = b/sin В = c/sin С

Аналогичное соотношение можно сформулировать в гиперболической тригонометрии:

sin A/sh a = sin B/sh b = sin С/sh c

Мир математики. т.4. Когда прямые искривляются. Неевклидовы геометрии - _94.jpg

Чтобы проверить гиперболические равенства, нужно подставить вместо гиперболических функций их определения:

Мир математики. т.4. Когда прямые искривляются. Неевклидовы геометрии - _95.jpg

и затем, выполнив соответствующие расчеты, убедиться, что получится один и тот же ответ.

Перейти на страницу:

Гомес Жуан читать все книги автора по порядку

Гомес Жуан - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки mybrary.info.


Мир математики. т.4. Когда прямые искривляются. Неевклидовы геометрии отзывы

Отзывы читателей о книге Мир математики. т.4. Когда прямые искривляются. Неевклидовы геометрии, автор: Гомес Жуан. Читайте комментарии и мнения людей о произведении.


Уважаемые читатели и просто посетители нашей библиотеки! Просим Вас придерживаться определенных правил при комментировании литературных произведений.

  • 1. Просьба отказаться от дискриминационных высказываний. Мы защищаем право наших читателей свободно выражать свою точку зрения. Вместе с тем мы не терпим агрессии. На сайте запрещено оставлять комментарий, который содержит унизительные высказывания или призывы к насилию по отношению к отдельным лицам или группам людей на основании их расы, этнического происхождения, вероисповедания, недееспособности, пола, возраста, статуса ветерана, касты или сексуальной ориентации.
  • 2. Просьба отказаться от оскорблений, угроз и запугиваний.
  • 3. Просьба отказаться от нецензурной лексики.
  • 4. Просьба вести себя максимально корректно как по отношению к авторам, так и по отношению к другим читателям и их комментариям.

Надеемся на Ваше понимание и благоразумие. С уважением, администратор mybrary.info.


Прокомментировать
Подтвердите что вы не робот:*