Открытие без границ. Бесконечность в математике - Грасиан Энрике (книги читать бесплатно без регистрации полные .TXT) 📗
В настоящее время науки отделены от философии, но это не означает, что философия не оказывает на них никакого влияния — мы просто меньше осознаём их взаимосвязь.
Основные результаты Декарта, полученные им помимо других важных открытий, в частности классификации кривых и работ по коническим сечениям, изложены в труде «Геометрия». Декарт считал, что решение геометрических задач часто требует излишних умственных усилий, направленных на то, чтобы мысленно представить расположение фигур. Он создал систему, в которой фигуры представлялись как множество точек, каждой из которых можно было поставить в соответствие числа. Таким образом, геометрическая задача сводилась к алгебраической, а многие алгебраические задачи стало возможно решить геометрическими методами. Говорить о том, что в его работах заложены основы аналитической геометрии, было бы преувеличением, однако можно с абсолютной уверенностью утверждать, что в них была впервые описана декартова геометрия.
Декарт рассмотрел бесконечность в работе «Первоначала философии», в которой он говорил не о бесконечном, а о неопределённом. Он признавал существование бесконечно большого, заявляя, что число звёзд на небе не определено, и существование бесконечно малого, говоря, что материя бесконечно делима. Эта подмена понятий была умышленной, и Декарт оправдывал её тем, что слово «бесконечность» должно использоваться только применительно к Богу. Учёный принимал возможность того, что нечто бесконечное может иметь предел, недостижимый для нас. Таким образом, по мнению Декарта, невозможность существования актуальной бесконечности вызвана особенностями человеческой природы со всеми сопутствующими ограничениями, что не помешало учёному согласиться с существованием потенциальной бесконечности, так как, по его мнению, нельзя размышлять о конечном, если не существует бесконечного. «Невозможно, чтобы моя природа была такой, какая она есть, то есть конечной и содержащей представления о бесконечности, если бы бесконечности не существовало. Идея о Боге подобна отпечатку, который мастер ставит на своей работе, и ни в коей мере не требуется, чтобы этот отпечаток был чем-то, не принадлежащим работе мастера», — заключает Декарт, считавший наши представления о бесконечности врождёнными.
ОПАСНЫЕ ЧАСТНЫЕ УРОКИ
В 1649 году королева Кристина пригласила Декарта в Швецию: она хотела учиться у него философии. Декарт воспользовался возможностью покинуть среду, где философские споры с голландскими протестантами постепенно становились всё более и более ожесточёнными.
По легенде, королева любила прохладу, и аудиенции обычно проходили в залах с открытыми окнами, из-за чего длились очень недолго. Декарт счёл себя обязанным давать королеве уроки в таких же условиях. Кроме того, по привычке он начинал занятия очень рано: экипаж забирал его в половине пятого утра, занятия начинались спустя полчаса. Пять месяцев спустя Декарт заболел пневмонией и 11 февраля 1650 года умер.
Фрагмент картины «Диспут королевы Кристины и Декарта» французского художника Пьера-Луи Дюмениля. Версаль.
Глава 4. Математический анализ
История математического анализа очень увлекательна, а его постепенному развитию сопутствовали споры, касавшиеся бесконечности, в частности бесконечно малых величин, поэтому математический анализ также называется анализом бесконечно малых.
Анализ бесконечно малых
Почему он называется анализом и какое отношение к нему имеют бесконечно малые? Понятие «анализ» указывает, что в математическом анализе решение задачи рассматривается как рабочая гипотеза, после чего проводится анализ того, каким образом стало возможным прийти к этому решению. Одним из наиболее выдающихся учёных, которые использовали этот метод, был Декарт, а истоки метода восходят ко временам Евклида.
Название «анализ бесконечно малых» объясняется использованием величин, связанных с геометрическими элементами. Эти величины делятся произвольное число раз (бесконечное деление), а затем рассматриваются как основные и неделимые составляющие всего. Как вы уже поняли, анализ бесконечно малых восходит к знаменитому методу исчерпывания, придуманному Евдоксом, и был систематически описан математиками XVII столетия, в частности Робервалем, Барроу, Ньютоном и Лейбницем.
Отметим ещё одно важное совпадение. С одной стороны, математика к тому времени превратилась в самостоятельную дисциплину в том смысле, что в ней не использовались модели природы. Скорее наоборот: это природа должна была адаптироваться к математике, что следовало понимать не как гипотезу, а как методологию, позволяющую создать прочную теорию, которая, разумеется, должна была найти практическое применение. Пример: с помощью методов анализа стало возможным определить, что траектория снаряда представляет собой параболу — геометрическую фигуру, чётко определённую на языке функций. Наиболее вероятно, что траектория снаряда не является идеальной параболой, но, перефразируя Торричелли, «тем хуже для снаряда».
Другой важный момент — появление в теоретической физике двух новых понятий: тело и материальная точка. Первое ввёл Декарт, а второе — Ньютон. Яблоко, которое якобы упало на голову Ньютону, было не спелым фруктом, приятным на вкус, а телом конкретных размеров, которое методами анализа можно свести к материальной точке.
Также следует учитывать, что в то время физика носила ярко выраженный прикладной характер: её задачи имели исключительно практическую направленность.
Например, известный оптический закон о том, что угол падения луча равен углу его отражения, очень важен при конструировании оптических приборов, однако эти углы отсчитываются от нормали, проведённой к отражающей поверхности в заданной точке. Если эта поверхность является прямой, к ней достаточно провести перпендикуляр в заданной точке, но если речь идёт о криволинейной поверхности, как в большинстве оптических инструментов, то возникает интересная геометрическая задача. Как показано на рисунке, нормаль к криволинейной поверхности в точке — это прямая, перпендикулярная касательной к кривой в заданной точке, но алгоритм построения касательной к произвольной кривой в то время был неизвестен.
Касательная «прикасается» к кривой в единственной точке. Перпендикуляр к касательной в этой точке, по определению, является нормалью к кривой.
Ещё один пример связан с нахождением максимумов и минимумов. Вернёмся к примеру со снарядом. Очевидна необходимость вычисления максимальной дальности полёта снаряда (а в некоторых случаях — максимальной высоты) в зависимости от угла наклона орудия.
Следующие четыре нерешённые задачи предопределили зарождение математического анализа, или анализа бесконечно малых:
— построение касательной к кривой в точке;
— расчёт максимумов и минимумов функции;
— расчёт квадратур, то есть вычисление площади, ограниченной одной или несколькими кривыми;
— спрямление кривых, то есть вычисление длины кривой между двумя её точками.
Во всех этих задачах присутствуют бесконечно малые величины.
Ньютон и Лейбниц считаются родоначальниками математического анализа, в котором они систематизировали знания, накопленные их предшественниками. Они следовали разными путями, и им обоим пришлось столкнуться с загадками бесконечности, которые они решили каждый по-своему.
ИНТЕГРАЛЬНОЕ ИСЧИСЛЕНИЕ ЭЙЛЕРА
С помощью интегралов можно рассчитывать не только площади плоских фигур, но также длины кривых, объёмы тел, ограниченных произвольными поверхностями, и тел вращения. В общем случае интегралы позволяют найти любое значение, выраженное в виде бесконечной суммы бесконечно малых величин, то есть почти всё что угодно. Сфера практического применения интегралов столь широка, что они образуют отдельный раздел прикладной математики. Вне зависимости от того, где выполняется вычисление интегралов, на маленьких калькуляторах или в мощных компьютерных программах, сложно представить инженера, которому не требовалось бы интегральное исчисление. В 1770 году швейцарский математик Леонард Эйлер (1707–1783) создал трёхтомный труд по интегральному исчислению. В некотором смысле все современные книги по математическому анализу являются всего лишь изменёнными и обновлёнными изданиями этого труда, в котором даже спустя 150 лет после публикации никто не смог найти ни единого недочёта. По этой причине «Интегральное исчисление» Эйлера считается важнейшей работой по математическому анализу из когда-либо написанных.