Mybrary.info
mybrary.info » Книги » Научно-образовательная » Химия » Шпаргалка по неорганической химии - Макарова Ольга (книги полные версии бесплатно без регистрации .txt) 📗

Шпаргалка по неорганической химии - Макарова Ольга (книги полные версии бесплатно без регистрации .txt) 📗

Тут можно читать бесплатно Шпаргалка по неорганической химии - Макарова Ольга (книги полные версии бесплатно без регистрации .txt) 📗. Жанр: Химия. Так же Вы можете читать полную версию (весь текст) онлайн без регистрации и SMS на сайте mybrary.info (MYBRARY) или прочесть краткое содержание, предисловие (аннотацию), описание и ознакомиться с отзывами (комментариями) о произведении.
Перейти на страницу:

Из этих идей развилась современная теория ионной связи.

7. Общая характеристика P-, S-, D-элементов

Элементы в периодической системе Менделеева делятся на s-, p-, d-элементы. Это подразделение осуществляется на основе того, сколько уровней имеет электронная оболочка атома элемента и каким уровнем заканчивается заполнение оболочки электронами.

К s-элементам относят элементы IA-группы – щелочные металлы. Электронная формула валентной оболочки атомов щелочных металлов ns1. Устойчивая степень окисления равна +1. Элементы IА-группы обладают сходными свойствами из-за сходного строения электронной оболочки. При увеличении радиуса в группе Li-Fr связь валентного электрона с ядром слабеет и уменьшается энергия ионизации. Атомы щелочных элементов легко отдают свой валентный электрон, что характеризуют их как сильные восстановители.

Восстановительные свойства усиливаются с возрастанием порядкового номера.

К p-элементам относятся 30 элементов IIIA-VIIIA-групп периодической системы; p-элементы расположены во втором и третьем малых периодах, а также в четвертом—шестом больших периодах. Элементы IIIА-группы имеют один электрон на p-орбитали. В IVА-VIIIА-группах наблюдается заполнение p-подуровня до 6 электронов. Общая электронная формула p-элементов ns2np6. В периодах при увеличении заряда ядра атомные радиусы и ионные радиусы p-элементов уменьшаются, энергия ионизации и сродство к электрону возрастают, электроотрицательность увеличивается, окислительная активность соединений и неметаллические свойства элементов усиливаются. В группах радиусы атомов увеличиваются. От 2p-элементов к 6p-элементам энергия ионизации уменьшается. Усиливаются металлические свойства p-элемента в группе с увеличением порядкового номера.

К d-элементам относятся 32 элемента периодической системы IV–VII больших периодов. В IIIБ-группе у атомов появляется первый электрон на d-орбитали, в последующих Б-группах d-подуровень заполняется до 10 электронов. Общая формула внешней электронной оболочки (n-1)dansb, где a=1÷10, b=1÷2. С увеличением порядкового номера свойства d-элементов изменяются незначительно. У d-эле-ментов медленно происходит возрастание атомного радиуса, также они имеют переменную валентность, связанную с незавершенностью предвнешнего d-электронного подуровня. В низших степенях окисления d-элементы обнаруживают металлические свойства, при увеличении порядкового номера в группах Б они уменьшаются. В растворах d-элементы с высшей степенью окисления обнаруживают кислотные и окислительные свойства, при низших степенях окисления – наоборот. Элементы с промежуточной степенью окисления проявляют амфотерные свойства.

8. Ковалентная связь. Метод валентных связей

Химическая связь, осуществляемая общими электронными парами, возникающих в оболочках связываемых атомов, имеющих антипараллельные спины, называется атомной, или ковалентной связью. Ковалентная связь двухэлектронная и двуцентровая (удерживает ядра). Она образуется атомами одного вида – ковалентная неполярная – новая электронная пара, возникшая из двух неспаренных электронов, становится общей для двух атомов хлора; и атомами разного вида, сходных по химическому характеру – ковалентная полярная. Элементы с большей электроотрицательностью (Cl) будут оттягивать общие электроны от элементов с меньшей электроотрицательностью (Н). Атомы с непарными электронами, имеющими параллельные спины, отталкиваются – химическая связь не возникает. Способ образования ковалентной связи называется обменным механизмом.

Свойства ковалентной связи. Длина связи – межъядерное расстояние. Чем это расстояние короче, чем прочнее химическая связь. Энергия связи – количество энергии, требующееся для разрыва связи. Величина кратности связи прямо пропорциональна энергии связи и обратно пропорциональна длине связи. Направленность связи – определенное расположение электронных облаков в молекуле. Насыщаемость – способность атома образовывать определенное количество ковалентных связей. Химическая связь, образованная перекрыванием электронных облаков вдоль оси, соединяющей центры атомов, называется δ-связью. Связь, образованная перекрыванием электронных облаков перпендикулярно оси, соединяющей центры атомов, называется π-связью. Пространственная направленность ковалентной связи характеризуется углами между связями. Эти углы называются валентными углами. Гибридизация – процесс перестройки неравноценных по форме и энергии электронных облаков, ведущих к образованию одинаковых по тем же параметрам гибридных облаков. Валентность – число химических связей (ковалентных), посредством которых атом соединен с другими. Электроны, участвующие в образовании химических связей, называются валентными. Число связей между атомами равно числу его неспаренных электронов, участвующих в образовании общих электронных пар, поэтому валентность не учитывает полярность и не имеет знака. В соединениях, в которых отсутствует ковалентная связь, имеет место степень окисления – условный заряд атома, исходный из предположения, что оно состоит из положительно или отрицательно заряженных ионов. К большинству неорганических соединений применимо понятие степень окисления.

9. Неполярная и полярная ковалентные связи

При помощи химической связи атомы элементов в составе веществ удерживаются друг возле друга. Тип химической связи зависит от распределения в молекуле электронной плотности.

Химическая связь – взаимное сцепление атомов в молекуле и кристаллической решетке под воздействием электрических сил притяжения между атомами. Атом на внешнем энергетическом уровне способен содержать от одного до восьми электронов. Валентные электроны – электроны предвнешнего, внешнего электронных слоев, участвующие в химической связи. Валентность – свойство атомов элемента образовывать химическую связь.

Ковалентная связь образуется за счет общих электронных пар, возникающих на внешних и предвнешних подуровнях связываемых атомов.

Общая электронная пара осуществляется через обменный или донорно-акцепторный механизм. Обменный механизм образования ковалентной связи – спаривание двух неспа-ренных электронов, принадлежащих различным атомам. Донорно-акцепторный механизм образования ковалетной связи – образование связи за счет пары электронов одного атома (донора) и вакантной орбитали другого атома (акцептора).

Есть две основные разновидности ковалентной связи: неполярная и полярная.

Ковалентная неполярная связь возникает между атомами неметалла одного химического элемента (O2, N2, Cl2) – электронное облако связи, образованное общей парой электронов, распределяется в пространстве симметрично по отношению к ядрам обоих атомов.

Ковалентная полярная связь возникает между атомами различных неметаллов (HCl, CO2, N2O) – электронное облако связи смещается к атому с большей электроотрицательностью.

Чем сильнее перекрываются электронные облака, тем прочнее ковалентная связь.

Электроотрицательность – способность атомов химического элемента оттягивать к себе общие электронные пары, участвующие в образовании химической связи.

Свойства ковалентной связи: 1) энергия; 2) длина; 3) насыщаемость; 4) направленность.

Длина связи – расстояние между ядрами атомов, образующих связь.

Энергия связи – количество энергии, необходимое для разрыва связи.

Насыщаемость – способность атомов образовывать определенное число ковалентных связей.

Направленность ковалентной связи – параметр, определяющий пространственную структуру молекул, их геометрию, форму.

Перейти на страницу:

Макарова Ольга читать все книги автора по порядку

Макарова Ольга - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки mybrary.info.


Шпаргалка по неорганической химии отзывы

Отзывы читателей о книге Шпаргалка по неорганической химии, автор: Макарова Ольга. Читайте комментарии и мнения людей о произведении.


Уважаемые читатели и просто посетители нашей библиотеки! Просим Вас придерживаться определенных правил при комментировании литературных произведений.

  • 1. Просьба отказаться от дискриминационных высказываний. Мы защищаем право наших читателей свободно выражать свою точку зрения. Вместе с тем мы не терпим агрессии. На сайте запрещено оставлять комментарий, который содержит унизительные высказывания или призывы к насилию по отношению к отдельным лицам или группам людей на основании их расы, этнического происхождения, вероисповедания, недееспособности, пола, возраста, статуса ветерана, касты или сексуальной ориентации.
  • 2. Просьба отказаться от оскорблений, угроз и запугиваний.
  • 3. Просьба отказаться от нецензурной лексики.
  • 4. Просьба вести себя максимально корректно как по отношению к авторам, так и по отношению к другим читателям и их комментариям.

Надеемся на Ваше понимание и благоразумие. С уважением, администратор mybrary.info.


Прокомментировать
Подтвердите что вы не робот:*