Популярная библиотека химических элементов. Книга вторая. Серебро — нильсборий и далее - Коллектив авторов
Немало труда геологов, химиков и технологов уходит на поиски йодного сырья и разработку способов добычи иода. До 60-х годов прошлого столетия водоросли были единственным источником промышленного получения иода. В 1868 г. иод стали получать из отходов селитряного производства, в которых, есть иодат и иодид натрия. Бесплатное сырье и простой способ получения иода из селитряных маточных растворов обеспечили чилийскому иоду широкое распространение. В первую мировую войну поступление чилийской селитры и иода прекратилось, и вскоре недостаток иода начал сказываться на общем состоянии фармацевтической промышленности стран Европы. Начались поиски рентабельных способов получения иода. В нашей стране уже в годы Советской власти иод стали получать из подземных и нефтяных вод Кубани, где он был обнаружен русским химиком A. Л. Потылициным еще в 1882 г. Позже подобные воды были открыты в Туркмении и Азербайджане.
Но содержание иода в подземных водах и попутных водах нефтедобычи очень мало. В этом и заключалась основная трудность при создании экономически оправданных промышленных способов получения иода. Нужно было найти «химическую приманку», которая бы образовывала с иодом довольно прочное соединение и концентрировала его. Первоначально такой «приманкой» оказался крахмал, потом соли меди и серебра, которые связывали иод в нерастворимые соединения. Испробовали керосин — иод хорошо растворяется в нем. Но все эти способы оказались дорогостоящими, а порой и огнеопасными.
В 1930 г. советский инженер В.П. Денисович разработал угольный метод извлечения иода из нефтяных вод, и этот метод довольно долго был основой советского иодного производства. В килограмме угля за месяц накапливалось до 40 г иода…
Были испробованы и другие методы. Уже в последние десятилетия выяснили, что иод избирательно сорбируется высокомолекулярными ионообменными смолами. В йодной промышленности мира ионитный способ пока используется ограниченно. Были попытки применить его и у нас, но низкое содержание иода и недостаточная избирательность ионитов на иод пока не позволили этому, безусловно, перспективному методу коренным образом преобразить йодную промышленность.
Так же перспективны геотехнологические методы добычи иода. Они позволят извлекать иод из попутных вод нефтяных и газовых месторождений, не выкачивая эти воды на поверхность. Специальные реактивы, введенные через скважину, под землей сконцентрируют иод, и на поверхность будет идти не слабый раствор, а концентрат. Тогда, очевидно, резко возрастет производство иода и потребление его промышленностью — комплекс свойств, присущих этому элементу, для нее весьма привлекателен.
ИОД И ЧЕЛОВЕК. Организм человека не только не нуждается в больших количествах иода, но с удивительным постоянством сохраняет в крови постоянную концентрацию (10–5–10-6%) иода, так называемое йодное зеркало крови. Из общего количества иода в организме, составляющего около 25 мг, больше половины находится в щитовидной железе. Почти весь иод, содержащийся в этой железе, входит в состав различных производных тирозина — гормона щитовидной железы, и только незначительная часть его, около 1%, находится в виде неорганического иода I1-.
Большие дозы элементного иода опасны: доза 2–3 г смертельна. В то же время в форме иодида допускается прием внутрь намного больших доз.
Если ввести в организм с пищей значительное количество неорганических солей иода, концентрация его в крови повысится в 1000 раз, но уже через 24 часа иодное зеркало крови придет к норме. Уровень иодного зеркала строго подчиняется закономерностям внутреннего обмена и практически не зависит от условий эксперимента.
В медицинской практике иодорганические соединения используют для рентгенодиагностики. Достаточно тяжелые ядра атомов иода рассеивают рентгеновские лучи. При введении внутрь организма такого диагностического средства получаются исключительно четкие рентгеновские снимки отдельных участков тканей и органов.
ИОД И КОСМИЧЕСКИЕ ЛУЧИ. Академик В.И. Вернадский считал, что в образовании иода в земной коре большую роль играют космические лучи, которые вызывают в земной коре ядерные реакции, то есть превращения одних элементов в другие. Благодаря этим превращениям в горных породах могут образовываться очень небольшие количества новых атомов, в том числе атомов иода.
ИОД — СМАЗКА. Всего 0,6% иода, добавленного к углеводородным маслам, во много раз снижают работу трения в подшипниках из нержавеющей стали и титана. Это позволяет увеличить нагрузку на трущиеся детали более чем в 50 раз.
ИОД И СТЕКЛО. Иод применяют для изготовления специального поляроидного стекла. В стекло (или пластмассу) вводят кристаллики солей иода, которые распределяются строго закономерно. Колебания светового луча не могут проходить через них во всех направлениях. Получается своеобразный фильтр, называемый поляроидом, который отводит встречный слепящий поток света. Такое стекло используют в автомобилях. Комбинируя несколько поляроидов или вращая поляроидные стекла, можно достигнуть исключительно красочных эффектов — это явление используют в кинотехнике и в театре.
ЗНАЕТЕ ЛИ ВЫ, ЧТО:
— содержание иода в крови человека зависит от временя года: с сентября по январь концентрация иода в крови снижается, с февраля начинается новый подъем, а в мае—июне иодное зеркало достигает наивысшего уровня. Эти колебания имеют сравнительно небольшую амплитуду, и их причины до сих пор остаются загадкой;
— из пищевых продуктов много иода содержат яйца, молоко, рыба; очень много иода в морской капусте, которая поступает в продажу в виде консервов, драже и других продуктов;
— первый в России йодный завод был построен в 1915 г. в Екатеринославе (ныне Днепропетровск); получали иод из золы черноморской водоросли филлофоры; за годы первой мировой войны на этом заводе было добыто 200 кг иода;
— если грозовое облако «засеять» иодистым серебром или иодистым свинцом, то вместо града в облаке образуется мелкодисперсная снежная крупа: засеянное такими солями облако проливается дождем и не вредит посевам.
Ксенон
Инертные газы обнаружены в атмосфере в 1894 г. После того как были открыты гелий, неон, аргон и криптон, завершающие четыре первых периода таблицы Менделеева, уже не вызывало сомнений, что пятый и шестой периоды тоже должны оканчиваться инертным газом.
Но найти их удалось не сразу. Это и не удивительно: в 1 м3 воздуха 9,3 л аргона и всего лишь 0,08 мл ксенона.
Но к тому времени стараниями ученых, прежде всего англичанина Траверса, появилась возможность получать значительные количества жидкого воздуха. Стал доступен даже жидкий водород. Благодаря этому Рамзай совместно с Траверсом смог заняться исследованием наиболее труднолетучей фракции воздуха, получающейся после отгонки гелия, водорода, неона, кислорода, азота и аргона. Остаток содержал сырой (то есть неочищенный) криптон. Однако после откачки его в сосуде неизменно оставался пузырек газа. Этот газ голубовато светился в электрическом разряде и давал своеобразный спектр с линиями в областях от оранжевой до фиолетовой.
Характерные спектральные. линии — визитная карточка элемента. У Рамзая и Траверса были все основания считать, что открыт новый инертный газ. Его назвали ксеноном, что в переводе с греческого значит «чужой»: в криптоновой фракции воздуха он действительно выглядел чужаком.
В поисках нового элемента и для изучения его свойств Рамзай и Траверс переработали около 100 т жидкого воздуха; индивидуальность ксенона как нового химического элемента они установили, оперируя всего 0,2 см3 этого газа. Необычайная для того времени тонкость эксперимента!
Хотя содержание ксенона в атмосфере крайне мало, именно воздух — практически единственный и неисчерпаемый источник ксенона. Неисчерпаемый — потому, что почти весь ксенон возвращается в атмосферу.