Наука и удивительное (Как человек понимает природу) - Вайскопф Виктор (читать книги онлайн регистрации .txt) 📗
На каком же расстоянии от нас находятся звезды? Предположим, что звезды, которые мы видим на небе, примерно столь же велики и ярки, как и Солнце, что в значительной степени верно. Нам они совсем не кажутся одинаково блестящими: одни светят ярко, другие — слабо. Если наше исходное предположение верно, то это можно объяснить только тем, что одни звезды ближе к нам, другие — дальше. Тогда нам легко вычислить расстояния до звезд.
Обратимся теперь к Сириусу и вспомним такой хорошо известный факт: если одно из двух одинаково ярких тел находится от нас на расстоянии в n раз большем, чем другое, то более близкое тело кажется в n2 раз ярче. Применим этот закон к Солнцу и Сириусу. Солнце кажется значительно более ярким. Сравнивая интенсивности света, мы увидим, что Солнце в (миллион)2 раз ярче Сириуса. Тогда из нашего закона следует, что Сириус находится от нас в миллион раз дальше, чем Солнце. Яркость других звезд, например семи звезд ковша Большой Медведицы, в девять раз меньше яркости Сириуса. Тогда, если справедливо наше предположение о равной абсолютной светимости, они должны находиться еще в три раза дальше. Было бы легко найти расстояния до всех звезд, а значит и размеры всей нашей видимой Вселенной, если бы все звезды имели приблизительно равную светимость.
Нельзя ли подтвердить эту гипотезу какими-либо другими наблюдениями? Да, можно. Это делают, непосредственно измеряя расстояния до некоторых звезд и сравнивая полученный результат с тем, который следует из нашей гипотезы. Если результаты, найденные обоими способами, совпадают, гипотеза верна. Простейший способ измерения расстояния до какого-либо недоступного предмета состоит в том, чтобы визировать его из двух разных точек и затем определить, как изменяется направление, в котором он виден. Отдаленное дерево будет видно слегка в ином направлении, если мы пройдем несколько шагов в направлении, перпендикулярном линии, соединяющей дерево и наблюдателя. Чем дальше дерево, тем меньше изменится направление, в котором оно видно. Из этого изменения можно вычислить расстояние до дерева [3]. Конечно, звезды так далеки, что, ведя наблюдения из разных точек земного шара, невозможно заметить ни малейшего изменения в направлении.
Но здесь можно воспользоваться тем обстоятельством, что Земля вращается вокруг Солнца и мы поэтому непрерывно меняем точку наблюдения звезды (рис. 4).
Рис. 4. Кажущееся смещение. Зимой звезда видна в направлении З, а летом — в направлении Л (а). Поэтому звезда, видимая с Земли, кажется смещенной на расстояние, равное диаметру земной орбиты (б).
Зимой мы смотрим на звезду из точки, которая на 300 миллионов километров удалена от летней точки наблюдения. Если мы перемещаемся из некоторой точки круга в противоположную, то звезды, в особенности ближайшие, будут казаться слегка смещенными. Если за полгода Земля переместилась, скажем, справа налево, то звезды должны переместиться по небесному своду слева направо. Звезда переместится то небесному своду на расстояние, равное диаметру земной орбиты (300 миллионов километров), если считать неподвижной Землю, иначе говоря, мы увидим звезду, сместившуюся на угол, под которым виден диаметр земной орбиты со звезды. Если наша предыдущая гипотеза верна, то Сириус, который в миллион раз дальше от нас, чем Солнце, должен совершать периодические смещения, не превышающие размеры гривенника, наблюдаемого с расстояния в 5 км (увеличенный в миллион раз радиус гривенника). Такое смещение действительно было найдено!
Уже 125 лет назад у астрономов были инструменты, способные измерять такие малые смещения, и выяснилось, что Сириус и другие столь же яркие звезды действительно находятся от нас на расстоянии, предсказываемом гипотезой о равенстве их истинной яркости и яркости Солнца. Если расстояние до звезды можно измерить по ее небольшому периодическому смещению, то мы убеждаемся в том, что более яркие звезды находятся ближе, а менее яркие — дальше от нас. Наше предположение оказалось в общих чертах справедливым. Большинство звезд, расстояние до которых измерено, имеют близкую истинную яркость (светимость).
Теперь мы знаем расстояния до наиболее ярких, т. е. до ближайших, звезд. Мы можем оценить протяженность пустого пространства между нашей солнечной системой и ближайшим солнцеподобным объектом — оно в миллион раз больше расстояния от Земли до Солнца, т. е. примерно равно 1014 км [4]. Свету требуется десять лет, чтобы пройти это расстояние, почему мы и измеряем подобные расстояния в световых годах: Сириус отстоит от нас на 10 световых лет. Сравним это с несколькими минутами, которые требуются свету, чтобы пройти солнечную систему, или с десятой секунды, за которую свет может обойти вокруг Земли, и мы получим представление о расстояниях до наших сестринских солнц.
Прямым методом смещений можно измерить расстояние не до многих звезд, а только до ближайших к нам, отстоящих не более чем на 50 световых лет. На этом расстоянии находится около 300 звезд. Смещение большинства других звезд слишком мало, чтобы его можно было заметить. К счастью, есть много других, менее прямых методов измерения расстояний до звезд. Здесь мы не будем входить в детали этих методов. В общем, эти измерения подтвердили нашу гипотезу: звезды мало отличаются друг от друга по своей истинной яркости; если бы они находились на одном и том же расстоянии, то выглядели бы приблизительно одинаково яркими. Из этого правила есть много исключений, но им можно пользоваться для предварительной ориентации при оценке распределения звезд в пространстве. В действительности это правило выполняется гораздо лучше при сравнении звезд одного цвета. Например, звезды, подобные Солнцу (желтовато-белого цвета) [5], никогда заметно не отличаются друг от друга: одна может быть втрое ярче или втрое слабее другой, но для наших целей это различие очень невелико. Мы не сделаем большой ошибки при оценке расстояния, предполагая светимости всех звезд равными. Мы получим правильный порядок величин для расстояний, и это все, что нужно для получения общих представлений об огромных расстояниях во Вселенной.
Распределение звезд в пространстве
Посмотрим на звездное небо, чтобы представить себе распределение звезд в пространстве. Мы увидим яркие и слабые, тусклые звезды, причем слабых оказывается гораздо больше, чем ярких. На первый взгляд кажется, что нет никакой закономерности в распределении звезд по небу. Но при более систематическом наблюдении с использованием примитивного телескопа мы заметим, что слабые звезды распределены по небу далеко не равномерно. В Млечном Пути или около него слабых звезд значительно больше, чем в отдаленных от него участках неба. Если смотреть в хороший бинокль в направлении, сильно удаленном от Млечного Пути, мы заметим несколько ярких звезд, но почти не увидим очень слабых. Фон Млечного Пути, однако, мерцает миллионами звезд.
Что это означает? Это означает, что звезды не распределены в пространстве равномерно, а сосредоточены в участке, имеющем вид плоского диска. Наша солнечная система находится где-то в этом диске. Если мы смотрим в тело диска, то видим много звезд, и особенно много таких, которые весьма удалены от нас и поэтому кажутся слабыми, но если смотреть перпендикулярно плоскости диска, то мы заметим только несколько звезд, причем (вследствие их близости) относительно ярких.
Каковы же размеры этого диска, внутри которого находятся все звезды, видимые нами на небе? Мы снова можем воспользоваться своей гипотезой и измерить яркость слабейших звезд, еще видимых при наблюдении в направлении диска (Млечного Пути) и в перпендикулярном ему направлении. Для этого нужны мощные телескопы, позволяющие различить каждую отдельную звезду в Млечном Пути. Тогда мы снова сможем применить наш простой способ определения расстояний. Приведем полученные результаты: слабейшие звезды, еще видимые в направлении плоскости Млечного Пути, в 100 раз слабее звезд, еще видимых в перпендикулярном направлении. Поэтому радиус диска должен примерно в 10 раз превышать его толщину [6]. Яркость наиболее слабых звезд в Млечном Пути приблизительно в сто миллионов раз меньше яркости Сириуса; поэтому они должны находиться в 10 000 раз дальше, чем Сириус, т. е. располагаться на расстоянии 100 000 световых лет (рис. 5).