Наука и удивительное (Как человек понимает природу) - Вайскопф Виктор (читать книги онлайн регистрации .txt) 📗
Ядерная физика преподала нам урок исключительной важности. Вся материя состоит из элементарных частиц трех типов: протонов, нейтронов и электронов. Все в природе есть комбинация этих трех единиц. Протоны и нейтроны соединяются, образуя атомные ядра, электроны в соответствии со своими волновыми картинами движутся вокруг ядер, и получаются атомы; атомы соединяются в молекулы, а молекулы — в вещества, которые мы видим вокруг себя. Это было большое достижение — свести все многообразие веществ к трем элементарным единицам, которые образуют различные комбинации под влиянием ядерных и электромагнитных сил и создают все вещества во Вселенной.
Изотопы и радиоактивность
Атомное ядро состоит из протонов и нейтронов, удерживаемых вместе ядерными силами. Протон заряжен, а нейтрон электрически нейтрален, поэтому заряд ядра определяется числом протонов. Величина этого заряда играет очень важную роль, так как она определяет род атома, построенного вокруг ядра, и поэтому характеризует элемент, которому принадлежит данное ядро. Нейтроны служат только «клеем», они помогают удержать протоны в ядре.
Ядерные силы действуют наиболее эффективно в тех случаях, когда число нейтронов приблизительно равно или несколько больше числа протонов. Так устроено большинство ядер. Например, ядро гелия (его заряд — две единицы) состоит из 2 протонов и 2 нейтронов; ядро углерода содержит 6 протонов и 6 нейтронов, ядро азота — 7 протонов и 7 нейтронов.
Иногда определенное число протонов образует ядра с различным числом нейтронов. Эти различные ядра принадлежат одному и тому же элементу (элемент определяется числом протонов), но с различным весом. Два вида одного и того же элемента отличаются друг от друга только числом нейтронов в их ядрах и, следовательно, атомным весом; они называются изотопами. Например, существуют изотоп обычного углерода — его ядро содержит 6 протонов и 7 нейтронов — и изотоп обычного азота — его ядро содержит 7 протонов и 8 нейтронов. Изотопы углерода обозначаются символами С12 и С13, а изотопы азота — N14 и N15. Верхний индекс показывает общее число частиц (нейтронов и протонов), составляющих ядро. Изотопы С13 и N15 встречаются гораздо реже обычных С12 и N14.
Почему в ядро углерода нельзя поместить больше (например, 8) или, наоборот, меньше (например, 5) нейтронов? Тогда мы получили бы изотоп углерода с общим числом частиц, равным 14 или 11, т. е. С14 или С11. Это и на самом деле возможно, С11 и С14 можно получить в ускорителях. Однако в таких ядрах с их аномальным избытком или недостатком частиц одного рода происходит странное явление.
Это явление, наблюдаемое во всех случаях, когда между числом нейтронов и числом протонов нарушается баланс, называется радиоактивностью. Медленно, но верно протон сам собой превращается в нейтрон, если протонов слишком много, как в С11, или нейтрон превращается в протон, если есть аномальный избыток нейтронов, как в С14. Тогда из С11 получается ядро с 6 нейтронами и 5 протонами, т. е. ядро бора В11; С14 превращается в ядро с 7 протонами и 7 нейтронами, т. е. в ядро азота N14 (рис. 45).
Рис. 45. Радиоактивное превращение С14 в N14. Один нейтрон превращается в протон, испуская отрицательный электрон (е-) и нейтрино (ν). Светлые кружки — нейтроны, темные — протоны.
Этот процесс превращения имеет особый интерес. Он происходит медленно и непрерывно с определенным временем полураспада, которое составляет 20 мин для С11 и 4700 лет для С14. Мы применяем термин «полураспад», потому что после 20 мин половина ядер С11 станет ядрами В11; за следующие 20 мин превратится еще половина оставшихся ядер и т. д. Тот же закономерный процесс происходит и с С14, но для него соответствующие промежутки времени равны 4700 лет.
Каждое превращение сопровождается испусканием частиц. Прежде всего, электрический заряд не может внезапно уменьшиться с 6 до 5 единиц или возрасти с 6 до 7 без того, чтобы не изменилось что-нибудь еще. Ядро должно как-то приспособиться к изменению заряда. Испускаются две частицы, одна из них — электрон, положительный [40] или отрицательный, другая — «нейтрино». Нейтрино, незаряженный партнер электрона, очень легок, вернее, его масса просто равна нулю [41]. Так как нейтрино не несет заряда и, следовательно, на него не действуют силы электрического притяжения или отталкивания, он очень легко проникает в вещество. Испущенный электрон положителен, если протон превратился в нейтрон, как в С11, и отрицателен, если нейтрон превратился в протон, как в С14. Это компенсирует изменение заряда ядра.
Обе испущенные частицы обладают большой энергией. В превращении С11 → В14 пара электрон — нейтрино получает около миллиона электроновольт; в случае превращения C14 →N14 эта энергия равна 15 000 эв. Освобождение таких количеств энергии объясняется тем, что ядра конечных продуктов (В11 или N14) имеют меньшую энергию, чем исходные ядра. Как мы видели в предыдущей главе, переход от менее прочно связанной системы к более прочно связанной всегда дает выигрыш в энергии. У В11 и N14 отношение числа протонов к числу нейтронов сбалансировано лучше, чем у исходных ядер, и поэтому они связаны крепче.
Радиоактивные ядра имеют большое значение в медицине, потому что электроны с большой энергией действуют на живые ткани. Существует много практических приложений радиоактивности и помимо медицинских. При помощи современных ускорителей сравнительно легко получать ядра радиоактивных элементов. Для создания ядер с аномальным избытком нейтронов или протонов достаточно бомбардировать обычные ядра протонами или нейтронами. У некоторых из этих радиоактивных изотопов период полураспада составляет лишь несколько секунд, у других он равен часам или годам; у немногих изотопов он достигает миллиардов лет. Такие долгоживущие изотопы не надо производить искусственно: их находят в земной коре; в качестве хорошо известного долгоживущего изотопа назовем радий. Эти изотопы [42] образовались в то время, когда вещество Земли подвергалось естественной бомбардировке протонами и нейтронами, в далеком прошлом при взрыве каких-то звезд. Благодаря большому периоду полураспада этих веществ мы по-прежнему встречаем их на Земле.
Радиоактивность [43] — это превращение несбалансированного, неустойчивого ядра в более устойчивое, сопровождающееся испусканием электрона и нейтрино. Подобный процесс весьма загадочен. Мы не знаем ни его значения, ни его связи с другими ядерными явлениями. Идет он очень медленно. Годы, часы, даже секунды — это очень длинные промежутки времени для ядерной системы, где движение происходит исключительно быстро. Резерфорд однажды сказал, что радиоактивные превращения идут так медленно, что практически вообще не происходят! Однако они есть. Даже отдельный свободный нейтрон живет всего лишь 10 мин, если он не «встроен» в ядро. Он самопроизвольно превращается в более устойчивый протон, испуская при этом электрон и нейтрино. Но как часть нерадиоактивного ядра нейтрон столь же устойчив, как и протон.
Ядерная энергия, ядерное горение
Тепло от горения угля происходит из соединения атомов кислорода и углерода, образующих молекулу, в которой они прочно связаны друг с другом. Энергия освобождается во всех случаях соединения атомов в прочно связанную единицу. Можно ли применить тот же принцип к связям в ядре? Энергия производится при соединении нейтронов и протонов в ядра. Ядерное пламя должно существовать и быть значительно сильнее обычного пламени, так как энергии, участвующие в ядерных явлениях, в сотни тысяч раз больше энергии электронов на атомных орбитах.