Сталин и бомба. Советский Союз и атомная энергия. 1939-1956 - Холловэй (Холловей) Дэвид (читаем книги онлайн .txt) 📗
Когда Трумэн принимал это решение, американские ученые еще не знали, как сделать супербомбу. Две главные проблемы заключались в том, как передать энергию от взрыва атомной бомбы термоядерному горючему (проблема поджига) и как обеспечить самоподдерживающуюся реакцию синтеза (термоядерное горение). Существовал лишь некоторый оптимизм, что эти две проблемы могут быть решены. Теллер полагал, что высокая температура при взрыве атомной бомбы может быть использована для поджига термоядерной реакции в смеси дейтерия с тритием, а расчеты, проведенные им и его группой, кажется, показали, что самоподдерживающаяся термоядерная реакция может пойти и в дейтерии. В октябре 1949 г. ГКК оценил, что «сконцентрированный мозговой штурм проблемы с вероятностью более 50% позволит создать оружие в пределах пяти лет» {1624}.
Однако в 1950 г. математик Станислав Улам показал, что прежние расчеты Теллера были ошибочными, и понадобится очень большое количество трития, чтобы инициировать самоподдерживающуюся термоядерную реакцию; таким образом, «Супер» становился проектом, требующим высоких затрат. Дальнейшая работа Улама и Ферми усилила сомнения в возможности осуществления самоподдерживающейся термоядерной реакции в дейтерии. В результате этих расчетов программа «Супер» к осени 1950 г. оказалась под вопросом. «Классическая Супер», как назывался проект, обсуждавшийся в Лос-Аламосе в апреле 1946 г., теперь казалась неосуществимой. Теллер был очень озабочен {1625}. [371]
Только в первые месяцы 1951 г. Теллер и Улам нашли выход из этого тупика {1626}. Решение Теллера — Улама основывалось на трех идеях. Первая состояла в том, что термоядерное топливо должно не только нагреваться, но и сжиматься для увеличения его плотности. Сжатие было ключевым моментом, так как оно могло сделать сгорание более быстрым, тем самым предотвращая большие потери тепла, выделяющегося при термоядерной реакции [372]. Вторая идея заключалась в использовании рентгеновского излучения при ядерном взрыве для сжатия термоядерного топлива; это была концепция термоядерной имплозии. Третья идея состояла в отделении делящегося материала от термоядерного топлива и использовании оболочки бомбы для передачи и фокусировки излучения ядерного взрыва для сжатия, или имплозии, термоядерного топлива. Поскольку начальная стадия деления физически отделялась от термоядерного топлива, бомбы этого типа иногда называются двухступенчатыми {1627}.
Американским ядерщикам сразу же стало ясно, что схема Теллера — Улама делает супербомбу осуществимой {1628}. [373] Первая проверка идеи состоялась 1 ноября 1952 г., когда термоядерное устройство было взорвано на атолле Эниветок в южной части Тихого океана. Это было не транспортируемое оружие, а огромное и громоздкое устройство, весившее около 60 тонн. Термоядерное топливо — жидкий дейтерий — должно было храниться при температуре ниже минус 250 ºС, что требовало целого холодильного завода. Жидкий дейтерий был окружен ураном-238. Взрыв, известный как испытания «Майк», был эквивалентен 10 мегатоннам тринитротолуола. Это был первый взрыв с использованием принципа, делавшего возможным создание супербомбы. Было доказано, что его мощность примерно в 500 раз превышает мощность первых плутониевых бомб и почти в 1000 раз — бомбы, сброшенной на Хиросиму {1629}.
Весной 1954 г. Соединенные Штаты испытали шесть вариантов «Супер» в Тихом океане. Первый и самый мощный из них произошел 1 марта на атолле Бикини на испытаниях «Браво». Была испытана транспортируемая бомба с дейтеридом лития в качестве термоядерного топлива. Эквивалент в 15 мегатонн оказался больше, чем ожидалось. Японское рыболовное судно, находившееся примерно в 80 милях от нулевой точки [374] в момент взрыва, получило тяжелое загрязнение радиоактивными осадками. У 23 членов экипажа скоро обнаружилась лучевая болезнь, один из них умер {1630}.
III
Первая советская атомная бомба была копией первой американской. Но первая советская водородная бомба была оригинальным проектом, и принцип ее разработки, избранный Советским Союзом, отличался от американского. Хотя советские физики продолжали изучать другие возможности, основные усилия сконцентрировались на «слойке». Весной 1950 г. группа Тамма переехала из Москвы в Арзамас-16. Сахаров и Романов приехали в начале марта, а сам Тамм — в апреле; Гинзбургу не позволили присоединиться к ним, так как его жена была выслана в Горький; Беленький остался в Москве из-за болезни {1631}. Таким образом, в Арзамасе-16 оказались две теоретические группы, Зельдовича и Тамма, которые работали в дружеском соперничестве {1632}.
Арзамас-16 стал местом, где велась основная теоретическая и экспериментальная работа по водородной бомбе. В эти работы были вовлечены и другие институты. В Москве были образованы две группы вычислителей, а в Арзамасе-16 еще одна, занимавшиеся расчетами по новому проекту. Одна из московских групп базировалась в Институте прикладной математики. Другая — в Институте физических проблем; ее возглавлял Ландау {1633}. В ряде институтов, включая собственную лабораторию, Курчатов организовал исследования термоядерных реакций и реакций деления, вызванных нейтронами высоких энергий, высвобождавшихся в результате термоядерных реакций {1634}.
Осенью 1952 г. Курчатов также начал подготовку радиохимического мониторинга испытаний. Советские ученые хотели иметь возможность оценить эффективность проекта. Курчатов просил Н.А. Власова исследовать реакции дейтронов (ядер атомов дейтерия) с литием-6 и литием-7. Власов писал в своих воспоминаниях: «Чтобы оценить интенсивность термоядерного процесса и усовершенствовать конструкцию реактора, нужно суметь найти следы реакций. Можно использовать, например, какой-нибудь радиоактивный индикатор, образующийся при участии быстрых дейтронов. Одним из удобных индикаторов был признан радиоактивный бе-риллий-7 с периодом полураспада 53 дня» {1635}. Бериллий-7 мог быть получен в реакции дейтронов с обоими изотопами лития. Чтобы использовать его в качестве индикатора, нужно было знать поперечные сечения реакций лития с дейтронами различных энергий. Такова была задача Власова {1636}. С 1950 г. брат Курчатова, Борис, изучал реакции деления на нейтронах высоких энергий и продукты деления, которые возникают в этих реакциях {1637}. [375] Эта работа также была очень важна для анализа испытаний.
В это же время было организовано производство дейтерида лития. Тяжелая вода, которая содержит атомы дейтерия вместо атомов водорода, обеспечивает источник дейтерия. Продолжали изучаться различные методы производства дейтерия, но не все оказались успешными. Анатолий Александров вспоминает заседание Специального комитета, на котором обсуждалось производство дейтерия: «Несколько военных. Курчатов, Ванников, Первухин, Малышев, Жданов, Махнев… Мешик (отвечал за режим, арестован потом по делу Берии). Меня усаживают по одну сторону от Берии, по другую — Махнев. Он докладывает: “Вот, Лаврентий Павлович, товарищ Александров предлагает построить завод по получению дейтерия”. Берия меня словно и не видит. Обращается только к Махневу: “А товарищ Александров знает, что опытная установка взорвалась?” Тот ему: “Да, знает”. — “А товарищ Александров подпись нэ снимает?” — “Не снимает”. Я тут же рядом сижу — что ему меня спросить! “А товарищ Александров знает, если завод взорвется, он поедет туда, где Макар тэлята гоняет?” Не выдерживаю: “Я себе представляю”. Поворачивается ко мне: “Подпись свою нэ снимаете?” — “Нет, не снимаю”. Завод построили. Слава богу, до сих пор не взорвался» {1638}. [376] Процесс получения дейтерия для первой советской термоядерной бомбы был разработан в Институте физических проблем {1639}.