Структура реальности - Дойч Дэвид (читать книги онлайн бесплатно без сокращение бесплатно txt) 📗
Но какими правилами вывода нам следует пользоваться? Это все равно, что спросить, как следует запрограммировать генератор виртуальной реальности для передачи мира геометрии Евклида. Ответ в том, что нужно использовать те правила вывода, которые, для нашего лучшего понимания, заставят наши символы вести себя в уместной степени как абстрактные категории, которые они обозначают. Как мы можем быть уверены, что они будут вести себя именно так? А мы и не можем быть уверены в этом. Предположим, что некоторые критики возражают против наших правил вывода, потому что они считают, что наши символы будут вести себя отлично от абстрактных категорий. Мы не можем ни взывать к авторитету Аристотеля или Платона, ни доказать, что наши правила вывода безошибочны (за исключением теоремы Геделя, это привело бы к бесконечному регрессу, ибо сначала нам пришлось бы доказать обоснованность самого метода доказательства, используемого нами). Не можем мы и надменно сказать критикам, что у них что-то не в порядке с интуицией, потому что наша интуиция говорит, что символы будут копировать абстрактные категории в совершенстве. Все, что мы можем сделать, — это объяснить. Мы должны объяснить, почему мы думаем, что при определенных обстоятельствах символы будут вести себя желаемым образом в соответствии с высказанными нами правилами. А критики могут объяснить, почему они предпочитают теорию, конкурирующую с нашей. Расхождение во мнениях относительно двух таких теорий — это частично расхождение во мнениях относительно наблюдаемого поведения физических объектов. Такого рода расхождения могут быть адресованы нормальными методами науки. Иногда они легко разрешимы, а иногда — нет. Другой причиной подобного расхождения может стать концептуальный конфликт, связанный с природой самих абстрактных категорий. И вновь дело за конкурирующими объяснениями, на этот раз объяснениями не физических объектов, а абстрактных категорий. Либо мы придем к общему пониманию со своими критиками, либо согласимся, что говорим о двух различных абстрактных объектах, либо вообще не придем к согласию. Нет никаких гарантий. Таким образом, в противоположность традиционному убеждению, споры в математике не всегда можно разрешить с помощью исключительно методологических средств.
На первый взгляд, характер традиционного символического доказательства кажется весьма отличным от характера «практического» виртуального доказательства. Но теперь мы видим, что они относятся друг к другу так же, как вычисления относятся к физическим экспериментам. Любой физический эксперимент можно рассматривать как вычисление, и любое вычисление — как физический эксперимент. В обоих видах доказательства физическими категориями (независимо от того, находятся они в виртуальной реальности или нет) манипулируют в соответствии с правилами. В обоих видах доказательства физические категории представляют интересующие нас абстрактные категории. И в обоих случаях надежность доказательства зависит от истинности теории о том, что физические и абстрактные категории действительно имеют соответствующие свойства.
Из вышеизложенного рассуждения также можно увидеть, что доказательство — это физический процесс. В действительности, доказательство — это разновидность вычисления. «Доказать» высказывание значит осуществить вычисление, которое, будучи выполненным правильно, устанавливает истинность высказывания. Используя слово «доказательство» для обозначения объекта, например, текста, написанного чернилами на бумаге, мы имеем в виду, что этот объект можно использовать в качестве программы для воссоздания вычисления соответствующего вида.
Следовательно, ни математические теоремы, ни процесс математического доказательства, ни впечатление о математической интуиции не подтверждает никакую определенность. Ничто не подтверждает ее. Наше математическое знание, так же как и наше научное знание, может быть глубоким и широким, может быть неуловимым и удивительно объяснительным, может быть принятым без разногласий; но оно не может быть определенным. Никто не может гарантировать, что в доказательстве, которое ранее считалось обоснованным, однажды не обнаружат глубокое недоразумение, казавшееся естественным из-за ранее несомненного «самоочевидного» допущения о физическом мире, или об абстрактном мире, или об отношении некоторых физических и абстрактных категорий.
Именно такое ошибочное, самоочевидное допущение привело к тому, что саму геометрию ошибочно классифицировали как раздел математики в течение двух тысячелетий, приблизительно с 300 года до н.э., когда Евклид написал свой труд «Элементы», до девятнадцатого века (а в некоторых словарях и школьных учебниках до сегодняшнего дня). Геометрия Евклида сформировала часть интуиции любого математика. В конечном счете, некоторые математики начали сомневаться в самоочевидности, в частности, одной из аксиом Евклида (так называемой «аксиомы о параллельных»). Сначала они не сомневались в истинности этой аксиомы. Говорят, что великий немецкий математик Карл Фридрих Гаусс был первым, кто подверг ее проверке. Аксиома о параллельных необходима при доказательстве того, что сумма углов треугольника составляет 180°. Легенда гласит, что в совершенной секретности (из-за боязни быть осмеянным) Гаусс разместил своих ассистентов с фонарями и теодолитами на вершинах трех холмов, чтобы вблизи измерить вершины самого большого треугольника. Он не обнаружил никаких отклонений от предсказаний Евклида, однако теперь мы знаем, что это произошло потому, что его инструменты не обладали достаточной чувствительностью. (С геометрической точки зрения окрестность Земли оказывается довольно пассивным местом). Общая теория относительности Эйнштейна включала новую теорию геометрии, которая противоречила геометрии Евклида и была доказана экспериментально. Сумма углов реального треугольника в действительности не обязательно составляет 180°: истинная сумма зависит от гравитационного поля внутри этого треугольника.
Весьма похожая ошибочная классификация была вызвана фундаментальной ошибкой относительно самой природы математики, которую математики допускали с античных времен, а именно, что математическое знание более определенно, чем какая-либо другая форма знания. Такая ошибка не оставляет выбора классификации теории доказательства, кроме как части математики, поскольку математическая теорема не может быть определенной, если теория, подтверждающая метод ее доказательства, сама по себе неопределенна. Но как мы только что видели, теория доказательства не является разделом математики — она является наукой. Доказательства не абстрактны. Не существует абстрактного доказательство чего-либо, так же, как не существует абстрактного вычисления чего-либо. Конечно, можно определить класс абстрактных категорий и назвать их «доказательствами», но эти «доказательства» не могут подтвердить математические утверждения, потому что их невозможно увидеть. Они могут убедить кого-либо в истинности высказывания не более, чем абстрактный генератор виртуальной реальности, который физически не существует, может убедить людей, что они находятся в другой среде, или абстрактный компьютер может разложить на множители число. Математическая «теория доказательств» не имела бы никакого отношения к тому, какие математические истины можно или нельзя доказать в действительности, точно так же, как теория абстрактного «вычисления» не имеет никакого отношения к тому, что математики — или кто-то еще — могут или не могут вычислить в реальности, по крайней мере, если не существует отдельной эмпирической причины считать, что абстрактные «вычисления» в этой теории похожи на реальные вычисления. Вычисления, включая и особые вычисления, квалифицируемые как доказательства, — это физические процессы. Теория доказательств говорит о том, как обеспечить, чтобы эти процессы правильно имитировали абстрактные категории, которые они должны имитировать.
Теоремы Геделя называли «первыми новыми теоремами чистой логики за две тысячи лет». Но это не так: теоремы Геделя говорят о том, что можно, а что нельзя доказать, а доказательство — это физический Процесс. В теории доказательства нет ничего, что касалось бы только чистой логики. Новый способ доказательства Геделем общих утверждений о доказательствах зависит от определенных допущений о том, какие физические процессы могут или не могут представить абстрактный факт так. что наблюдатель сможет обнаружить его и убедиться, благодаря ему. Гедель перевел такие допущения в явное и выраженное невербально доказательство своих результатов. Его результаты были самоочевидно доказанными не потому, что были «чисто логическими», а потому, что математики нашли эти допущения самоочевидными.