Гиперпространство - Сапцина Ульяна Валерьевна (читать книги онлайн без сокращений TXT) 📗
3 млрд лет. Появляются первые квазары.
5 млрд лет. Появляются первые галактики.
10–15 млрд лет. Рождается Солнечная система. Через несколько миллиардов лет после этого на Земле появляются первые формы жизни.
Почти непостижимым выглядит то, что мы, разумные приматы с третьей планеты в системе мелкой звезды в мелкой галактике, сумели реконструировать историю нашей Вселенной почти с момента ее рождения, когда температура и давление превосходили все величины, которые можно встретить в Солнечной системе. Тем не менее именно эту картину нам открывает квантовая теория слабого, электромагнитного и сильного взаимодействий.
Какой бы удивительной ни выглядела наша версия сотворения, вероятно, еще удивительнее вероятность, что «червоточины» могут выступать в качестве ворот, ведущих в другие вселенные, а возможно, даже и машин времени, обеспечивающих связь с прошлым и будущим. Вооружившись квантовой теорией гравитации, физики, вероятно, сумеют найти ответ на интригующие вопросы: существуют ли параллельные миры и можно ли изменить прошлое?
Часть III
«Червоточины»: ворота в другие вселенные?
10. Черные дыры и параллельные миры
Слушай, здесь по соседству целая вселенная — идем же!
Черные дыры: туннели сквозь пространство и время
Черные дыры с недавних пор завладели воображением широкой публики. Исследованию этого странного предположения Эйнштейна, финальной стадии смерти коллапсирующей звезды, посвящены книги и документальные фильмы. Парадокс, но публика по-прежнему не подозревает о самой, пожалуй, необычайной особенности черных дыр — что они могут служить воротами в другую вселенную. Более того, в научном сообществе активно высказываются предположения о способности черных дыр открывать туннели во времени.
Для того чтобы понять, что такое черные дыры и как трудно отыскать их, следует сначала выяснить, почему сияют звезды, как они растут и как в конце концов погибают. Звезда рождается, когда огромное облако водорода, размерами многократно превосходящее нашу Солнечную систему, медленно сжимается под действием силы гравитации. Эта сила, сжимающая газ, постепенно нагревает его, поскольку гравитационная энергия преобразуется в кинетическую энергию атомов водорода. В обычных условиях отталкивающего заряда протонов в водороде достаточно, чтобы атомы оставались обособленными. Но в определенный момент, когда температура повышается до 10–100 млн кельвинов, кинетическая энергия протонов (ядер водорода) преодолевает электростатическое отталкивание, и они врезаются друг в друга. Тогда сила ядерного взаимодействия одерживает верх над электромагнитной силой, и два ядра водорода «сливаются», образуя гелий и выделяя огромные количества энергии.
Другими словами, звезда — это ядерная печь, в которой сгорает топливо — водород и образуется ядерная «зола» — отходы в виде гелия. Кроме того, звезда — случай шаткого равновесия между силой гравитации, стремящейся полностью уничтожить звезду, и силой ядерного взаимодействия, обладающей мощностью триллионов водородных бомб, которая стремится разорвать звезду. Расходуя свое ядерное топливо, звезда достигает зрелости и старости.
Для того чтобы понять, как в ходе ядерной реакции выделяется энергия, и выяснить, какие жизненные этапы проходит звезда, прежде чем стать черной дырой, обратимся к рис. 10.1, на котором представлен один из наиболее важных графиков современной науки, иногда называемый кривой энергии связи. На горизонтальной оси отражена атомная масса различных элементов — от водорода до урана. На вертикальной оси — грубо говоря, приблизительный средний «вес» каждого протона в ядре. Обратите внимание: протоны водорода и урана в среднем тяжелее, чем протоны других элементов в центре графика.
Рис. 10.1. Средняя масса каждого протона менее тяжелых элементов, таких как водород и гелий, сравнительно велика. Таким образом, если в звезде из водорода получается гелий, остается избыток массы, который преобразуется в энергию соответственно формуле Эйнштейна E = mc2. Благодаря этой энергии светят звезды. Но по мере того, как в реакцию вступают все более и более тяжелые элементы, особенно когда дело доходит до железа, получать больше энергии уже не удается. Тогда звезда схлопывается с гигантским выбросом тепла, в итоге возникает сверхновая. Колоссальный взрыв разрывает звезду и «осеменяет» межзвездное пространство, в котором образуются новые звезды. После этого процесс начинается сначала, как в автомате для игры в пинбол.
Наше Солнце — обыкновенная желтая звезда, состоящая главным образом из водорода. Как и при Большом взрыве, в ней из водорода образуется гелий. Но, поскольку протоны водорода тяжелее протонов гелия, возникает избыток массы, который преобразуется в энергию в соответствии с формулой Эйнштейна E = mc2. Эта энергия и связывает ядра вместе. Кроме того, энергия высвобождается при образовании гелия из водорода. Вот почему солнце светит.
Но за миллиарды лет водород постепенно расходуется, в желтой звезде накапливается слишком много гелия, и ядерная печь прекращает работу. Когда это происходит, гравитация наконец одерживает верх и уничтожает звезду. При резком увеличении температуры звезда раскаляется достаточно, чтобы сжечь избыток гелия и преобразовать его в другие элементы, такие как литий и углерод. Обратим внимание, что энергия продолжает выделяться по мере снижения кривой в сторону более тяжелых элементов. Иными словами, горение гелия все еще возможно (точно так же обычная зола при определенных условиях может продолжать гореть). Несмотря на существенное уменьшение размера звезды, ее температура довольно высока, а внешняя оболочка значительно увеличивается в размерах. В сущности, когда наше Солнце исчерпает запасы водорода и начнет сжигать гелий, внешняя оболочка Солнца достигнет орбиты Марса. Возникнет так называемый красный гигант. Разумеется, это означает, что в процессе его возникновения Земля превратится в пар. Таким образом, кривая предсказывает окончательную участь Земли. Поскольку возраст нашего Солнца средний, т. е. ему примерно 5 млрд лет, пройдет еще 5 млрд лет, прежде чем оно поглотит Землю. (По иронии судьбы, Земля родилась из того же вихревого газового облака, из которого возникло наше Солнце. В настоящее время физики высказывают предположение, что Земля, созданная вместе с Солнцем, воссоединится с ним.)
И наконец, когда будет израсходован гелий, ядерная печь снова прекратит работу, и гравитация уничтожит звезду. Красный гигант сожмется и станет белым карликом — миниатюрной звездой, сократившейся примерно до размеров планеты Земля [112]. Белые карлики светят слабо, так как относятся к нижней части кривой, которой соответствует совсем небольшой избыток энергии согласно формуле E = mc2. Белый карлик сжигает то немногое, что остается на нижней части кривой.
Наше Солнце в конце концов превратится в белого карлика и на протяжении миллиардов лет будет медленно умирать, так как истощит все свои запасы ядерного топлива. В итоге оно станет темной, выгоревшей карликовой звездой. Однако считается, что если звезда обладает достаточной массой (в несколько раз превышающей массу нашего Солнца), то большинство элементов, содержащихся в белом карлике, будут по-прежнему участвовать в реакциях с образованием все более тяжелых элементов и со временем дело дойдет до железа. Излишки массы уже не будут давать энергии, ядерная печь прекратит работу. Гравитация вновь окажется сильнее и будет сжимать звезду, пока температура не увеличится сразу в тысячу раз, достигая триллионов градусов. В этот момент железное ядро сжимается, а наружная оболочка белого карлика разрушается, процесс сопровождается самым мощным в галактике выбросом энергии и образованием взрывающейся звезды — сверхновой. Всего одной сверхновой достаточно, чтобы на время затмить целую галактику со 100 млрд звезд.
112
Точнее, исключающий принцип Паули гласит, что два электрона не могут находиться в одном и том же квантовом состоянии с одинаковыми квантовыми числами. Это означает, что белый карлик можно упрощенно рассматривать как море Ферми или облако электронов, подчиняющихся принципу Паули.
Так как электроны не могут находиться в одном и том же квантовом состоянии, результирующая сила отталкивания не дает им сжаться в точку. Если речь идет о белом карлике, то эта отталкивающая сила в конечном счете противодействует силе гравитации.
Та же логика применима к нейтронам в нейтронной звезде, так как они тоже подчиняются исключающему принципу Паули, хотя вычисления в данном случае сложнее из-за других ядерных и общих релятивистских воздействий.