Mybrary.info
mybrary.info » Книги » Научно-образовательная » Физика » Структура реальности - Дойч Дэвид (читать книги онлайн бесплатно без сокращение бесплатно txt) 📗

Структура реальности - Дойч Дэвид (читать книги онлайн бесплатно без сокращение бесплатно txt) 📗

Тут можно читать бесплатно Структура реальности - Дойч Дэвид (читать книги онлайн бесплатно без сокращение бесплатно txt) 📗. Жанр: Физика. Так же Вы можете читать полную версию (весь текст) онлайн без регистрации и SMS на сайте mybrary.info (MYBRARY) или прочесть краткое содержание, предисловие (аннотацию), описание и ознакомиться с отзывами (комментариями) о произведении.
Перейти на страницу:

Экспериментальные и теоретические исследования в области квантового вычисления набирают темп во всем мире. Предлагают даже более обещающие новые технологии реализации квантовых компьютеров и постоянно открывают и анализируют новые типы квантового вычисления с различными преимуществами перед классическим вычислением. Я нахожу все эти разработки весьма захватывающими и считаю, что некоторые из них принесут технологические плоды. Но для этой книги данный вопрос несущественен. С фундаментальной точки зрения не имеет значения, насколько полезным оказывается квантовое вычисление, как не имеет значения и то, построим ли мы первый универсальный квантовый компьютер на следующей неделе, через века или не построим его никогда. В любом случае, квантовая теория вычисления должна быть неотъемлемой частью мировоззрения любого человека, ищущего фундаментального понимания реальности. То, что квантовые компьютеры говорят нам о связи законов физики, универсальности и, на первый взгляд, несвязанных направлений объяснения в структуре реальности, мы можем обнаружить — и уже обнаруживаем, — изучая их теоретически.

ТЕРМИНОЛОГИЯ

Квантовое вычисление — вычисление, которое требует квантово-механических процессов, особенно интерференции. Другими словами, вычисление, которое осуществляют в сотрудничестве с параллельными вселенными.

Экспоненциальное вычисление — вычисление, требования к ресурсам которого (например, необходимому времени) увеличиваются примерно с постоянным множителем при увеличении вводимого числа на каждый последующий разряд.

Легко/труднообрабатываемый (Правило быстрых приближенных расчетов) — вычислительная задача считается легкообрабатываемой, если ресурсы, необходимые для ее выполнения, не увеличиваются экспоненциально с ростом количества разрядов вводимого числа.

Хаос — неустойчивость движения большинства классических систем. Небольшая разница между двумя начальными состояниями порождает экспоненциально растущие отклонения двух результирующих траекторий. Однако реальность подчиняется не классической, а квантовой физике. Непредсказуемость, вызванная хаосом, в общем случае перекрывается квантовой неопределенностью, вызванной тем, что идентичные вселенные становятся различными.

Универсальный квантовый компьютер — компьютер, способный выполнить любое вычисление, которое способен выполнить любой другой квантовый компьютер, и передать любую конечную физически возможную среду в виртуальной реальности.

Квантовая криптография — любая форма криптографии, которую можно реализовать на квантовых компьютерах, но невозможно на классических.

Специализированный квантовый компьютер — квантовый компьютер, например, квантовое криптографическое устройство или квантовое устройство разложения на множители, который не является универсальным квантовым компьютером.

Декогерентность — когда различные отрасли квантового вычисления в различных вселенных по-разному воздействуют на окружающую среду, интерференция уменьшается, а вычисление может не получиться. Декогерентность — это главное препятствие практической реализации более мощных квантовых компьютеров.

РЕЗЮМЕ

Законы физики допускают существование компьютеров, способных передать любую физически возможную среду, не используя непрактично больших ресурсов. Таким образом, универсальное вычисление не просто возможно, как этого требовал принцип Тьюринга, оно также является легкообрабатываемым. Квантовые явления могут включать огромное множество параллельных вселенных, а потому, могут не поддаться эффективному моделированию в пределах одной вселенной. Тем не менее, эта жизнестойкая форма универсальности по-прежнему остается в силе, потому что квантовые компьютеры могут эффективно передать любую физически возможную квантовую среду, даже при взаимодействии огромного множества вселенных. Квантовые компьютеры также могут эффективно решать определенные математические задачи, например, разложение на множители, которые с классических позиций являются труднообрабатываемыми, а также осуществлять классически невозможные разновидности криптографии. Квантовое вычисление — это качественно новый способ использования природы.

Следующая глава, вероятно, приведет в ярость многих математиков. С этим ничего не поделаешь. Математика — это не то, чем они ее считают.

(Читатели, не знакомые с традиционными допущениями относительно определенности математического знания, могут посчитать главный вывод этой главы таковым, что наше знание математической истины зависит от нашего знания физического мира, и не более надежно, чем это знание является очевидным. Возможно, эти читатели предпочтут только просмотреть эту главу и сразу же перейти к обсуждению времени в главе 11).

Глава 10

Природа математики

«Структура реальности», которую я описывал до сих пор, была структурой физической реальности. Тем не менее, я свободно ссылался на такие категории, которых нет нигде в физическом мире, — абстракции, такие как числа и бесконечные множества компьютерных программ. Да и сами законы физики нельзя отнести к физическим категориям в том смысле, в каком к ним относятся камни и планеты, Как я уже сказал, «Книга Природы» Галилео — всего лишь метафора. И кроме того, существует вымысел виртуальной реальности, несуществующие среды, законы которых отличаются от реальных физических законов. За пределами этих сред находится то, что я назвал средами «Кантгоуту», которые невозможно передать даже в виртуальной реальности. Я сказал, что существует бесконечно много таких сред для каждой среды, которую можно передать. Но что значит сказать, что такие среды «существуют»? Если они не существуют ни в реальности, ни даже в виртуальной реальности, то где они существуют?

А существуют ли абстрактные нефизические категории вообще? Являются ли они частью структуры реальности? В данной ситуации меня не занимают проблемы простого использования слов. Очевидно, что числа, физические законы и т. д. действительно «существуют» в некотором смысле и не существуют в другом. Независимо от этого возникает следующий вопрос: как мы должны понимать такие категории? Какие из них являются всего лишь удобной формой слов, которые, в конечном счете, ссылаются на обычную физическую реальность? Какие из них всего лишь преходящие особенности нашей культуры? Какие из них произвольны, как правила банальной игры, которые нужно только посмотреть в приложении? А какие, если такие вообще есть, можно объяснить только, если приписать им независимое существование? Все, что относится к последнему виду, должно быть частью структуры реальности, как она определяется в этой книге, потому что это необходимо понять, чтобы понять все, что понято.

Это говорит о том, что нам снова следует воспользоваться критерием доктора Джонсона. Если мы хотим знать, действительно ли существует данная абстракция, мы должны спросить, «дает ли она ответную реакцию» сложным, автономным образом. Например, математики характеризуют «натуральные числа» 1, 2, 3,... — прежде всего — точным определением:

1 — это натуральное число.

За каждым натуральным числом следует только одно число, которое также является натуральным.

1 не следует ни за каким натуральным числом.

Подобные определения — это попытки абстрактного выражения интуитивного физического понятия последовательных значений дискретной величины. (Точнее, как я объяснил в предыдущей главе, в действительности это понятие является квантово-механическим). Арифметические действия, например, умножение и сложение, а также последующие понятия, подобные понятию простого числа, в этом случае определяют, ссылаясь на «натуральные числа». Но создав абстрактные «натуральные числа» через это определение и поняв их через эту интуицию, мы обнаруживаем, что осталось гораздо больше того, что мы все еще не понимаем о них. Определение простого числа раз и навсегда устанавливает, какие числа являются простыми, а какие не являются. Но понимание того, какие числа являются простыми, — например, продолжается ли последовательность простых чисел бесконечно, как они сгруппированы, насколько и почему они «случайны», — влечет за собой новое понимание и изобилие новых объяснений. В действительности оказывается, что сама теория чисел — это целый мир (этот термин используют часто). Для более полного понимания чисел мы должны определить множество новых классов абстрактных категорий и постулировать много новых структур и связей между этими структурами. Мы обнаруживаем, что некоторые подобные структуры связаны с интуицией другого рода, которой мы уже обладаем, но которая вопреки этому не имеет ничего общего с числами — например, симметрия, вращение, континуум, множества, бесконечность и многое другое. Таким образом, абстрактные математические категории, с которыми, как нам кажется, мы знакомы, тем не менее, могут удивить или разочаровать нас. Они могут неожиданно возникнуть в новых нарядах или масках. Они могут быть необъяснимы, а впоследствии подойти под новое объяснение. Таким образом, они являются сложными и автономными, и, следовательно, по критерию доктора Джонсона, мы должны сделать вывод об их реальности. Поскольку мы не можем понять их ни как часть себя, ни как часть чего-либо еще, что мы уже понимаем, но можем понять их как независимые категории, следует сделать вывод, что они являются реальными, независимыми категориями.

Перейти на страницу:

Дойч Дэвид читать все книги автора по порядку

Дойч Дэвид - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки mybrary.info.


Структура реальности отзывы

Отзывы читателей о книге Структура реальности, автор: Дойч Дэвид. Читайте комментарии и мнения людей о произведении.


Уважаемые читатели и просто посетители нашей библиотеки! Просим Вас придерживаться определенных правил при комментировании литературных произведений.

  • 1. Просьба отказаться от дискриминационных высказываний. Мы защищаем право наших читателей свободно выражать свою точку зрения. Вместе с тем мы не терпим агрессии. На сайте запрещено оставлять комментарий, который содержит унизительные высказывания или призывы к насилию по отношению к отдельным лицам или группам людей на основании их расы, этнического происхождения, вероисповедания, недееспособности, пола, возраста, статуса ветерана, касты или сексуальной ориентации.
  • 2. Просьба отказаться от оскорблений, угроз и запугиваний.
  • 3. Просьба отказаться от нецензурной лексики.
  • 4. Просьба вести себя максимально корректно как по отношению к авторам, так и по отношению к другим читателям и их комментариям.

Надеемся на Ваше понимание и благоразумие. С уважением, администратор mybrary.info.


Прокомментировать
Подтвердите что вы не робот:*