Заклятие Фавна - Томилин Анатолий Николаевич (лучшие книги читать онлайн бесплатно без регистрации txt) 📗
Большое значение имеет также и комплексное использование топлива и самого тепла. В нашей стране энергостроители добились больших успехов в проектировании и сооружении теплоэлектроцентралей — ТЭЦ. От обычных тепловых электростанций они отличаются тем, что снабжают потребителей не только электроэнергией, но и теплом. Скажем, так: «температурный интервал» от 540° С и до 100° С используется для выработки электрической энергии, а остывшую воду отправляют для отопления. На этом примере особенно хорошо должен быть понятен выигрыш от повышения верхнего температурного предела.
ТЭЦ значительно экономичнее обычных тепловых электростанций. Коэффициент использования топлива на них приближается к 60-70 процентам, тогда как коэффициент полезного действия ТЭС не выше 40 процентов.
С каждым годом все большую роль в общем балансе энергетики играют атомные электростанции — АЭС. Строго говоря, это те же тепловые, только с другим котлом и работающие на ином топливе. Сегодня хорошо известно, что ядерные реакторы бывают двух типов: на медленных (тепловых) нейтронах и на быстрых. Последние еще называют реакторами-размножителями, или бридерами. В них при переработке ядерного горючего одного вида накапливается еще большее количество новых делящихся материалов. Применение реакторов на быстрых нейтронах, естественно, выгоднее, и потому будущее промышленных установок для АЭС за ними.
Если говорить о схеме атомной электростанции, то она распадается на две части: в одной — та же паровая турбина, электрический генератор, конденсатор, водяной насос — все, как в схеме уже известной нам тепловой электростанции. А вот другая часть резко отличается: пар производится в теплообменнике-парогенераторе или в самом реакторе за счет тепла ядерной реакции.
Первый крупный атомный реактор на быстрых нейтронах в нашей стране был запущен в 1973 году в городе Шевченко, на берегу Каспийского моря. Здесь большое количество тепла требуется для опреснения морской воды, и потому устройство такой станции было особенно целесообразно. Еще более крупный реактор такого же типа введен в действие на Белоярской АЭС имени И.В. Курчатова, на Урале. В нем на каждый килограмм «сгоревшего» ядерного топлива воспроизводится 1, 5-1, 6 килограмма нового, готового к дальнейшей работе.
Однако в основном пока что на АЭС используются энергетические реакторы на медленных нейтронах. Здесь рядом с ядерным топливом в активной зоне реактора должен размещаться замедлитель. 3десь же происходят ядерные реакции, сопровождаемые. выделением огромной энергии, быстрые нейтроны замедляются, и тепло отводится теплоносителем, который в следующей ступени передает свое тепло и превращает воду в пар.
Чем же лучше атомная электростанция обычной ТЭС? Прежде всего дело заключается в топливе. Знаете ли вы, сколько нужно топлива современной достаточно мощной теплоэлектростанции? Несколько железнодорожных составов в сутки! Кроме того, что надо привезти и выгрузить уголь, необходимо вывезти золу и шлак.
Сколько дополнительной работы, сколько испорченной земли! Чтобы добыть уголь, нужно вскрыть земную поверхность, устроить карьеры — незаживающие раны. Чтобы убрать золу, нужно засыпать бесплодными отходами опять же часть земной поверхности.
А что атомная электростанция? Одной заправки реактора ядерным топливом — плутонием и природным ураном — хватает ему больше чем на год работы. И никакой золы, никакого шлака.
Выработка электроэнергии — важнейшая задача современности, но не единственная. Растет потребность в промышленном и отопительном тепле, металлургическая и химическая промышленность с каждым годом требуют все больше энергии и тепла, В нашей стране на эти нужды расходуется до 3/4 всех добываемых горючих ископаемых. Атомное тепло могло бы здесь сыграть решающую роль. Представьте себе металлургию… Ведь это редкий случай, когда топливо и руда лежат в непосредственной близости друг от друга. Чаще их приходится куда-то доставлять. Насколько же огромная энергоемкость ядерного горючего снизила бы загрузку железных дорог! Кроме того, современный технологический процесс выплавки чугуна или стали с помощью сжигаемого органического топлива сопровождается немалыми выбросами в атмосферу углекислого газа и сернистого ангидрида. Технологическое тепло от ядерных реакторов освободит металлургические комбинаты отзолы в пыли, от копоти, загазованности, завесы пыли и дыма. Количество вредных отходов, отравляющих землю, воду и воздух, уменьшится в тысячи раз.
А ведь кроме заводов по выплавке чугуна и стали существуют энергоемкие производства, где получают алюминий, цинк, осуществляют крекинг и реформинг нефти и нефтепродуктов, синтез хлорвинила, этилена и аммиака.
Не менее важно внедрение атомной энергетики и в систему теплофикации городов, создание атомных электроцентралей — АТЭЦ и атомных станций теплоснабжения — ACT. Естественно, что при их постройке должны быть учтены дополнительные требования по безопасности населения и обеспечению радиоактивной чистоты на любых режимах работы реакторов. Ведь АТЭЦ и ACT будут сооружаться непосредственно в черте города.
Первые такие станции уже работают, обеспечивая теплом и электроэнергией дома. Особенно целесообразны они в отдаленных местах, лишенных дешевых транспортных путей, куда стоимость доставки топлива делает его поистине золотым, как, например, в северо-восточную часть Сибири.
Атомная энергетика в последние годы развивается особенно быстро. Сегодня общая мощность АЭС во всех странах еще не очень велика — она не превышает 100 миллионов киловатт. Но единичная мощность (электрическая) ядерных реакторов уже достигает 1 миллиона киловатт и больше, а в недалеком будущем она поднимается до 1, 5 и 2 миллионов киловатт, а может быть, будет и еще больше.
Принцип работы гидравлических электростанций (ГЭС) понятен, наверное, каждому. С незапамятных времен научились люди использовать энергию падающей воды и стали строить водяные колеса мельниц на реках, сооружая на равнинных участках плотины, чтобы получить разность уровней. Струи воды направлялись на плицы колеса, ударяли в них и заставляли крутиться все колесо, с которым был соединен жернов. Вот и вся конструкция.
По идее сегодня все то же самое. Только вода с верхнего уровня перетекает на нижний либо по специальным трубам — турбинным трубопроводам, либо движется по водоводам, проложенным прямо в теле плотины. Под напором струи приобретают большую скорость. С силой бьют они по лопастям гидротурбины, приводя ротор во вращение. На одном валу с ротором сидит электрогенератор. Та же мельница.
В 1980 году по заданию редакции журнала «Звезда» я побывал на строительстве крупнейшей гидроэлектростанции Советского Союза — Саяно-Шушенской ГЭС. Перед тем как лететь, познакомился вкратце с основными этапами развития энергосистем в этом регионе.
После пуска крупнейших в мире ГЭС — Братской и Красноярской, после завершения создания к 1963 году единой энергосистемы Сибири — от Омска до Улан-Удэ край получил возможность развивать промышленность, особенно энергоемкие производства.
К концу пятой пятилетки 8, 5 процентов всей установленной мощности гидростанций приходились на европейскую часть СССР и только 15 процентов — на азиатскую. В стране работало множество карликовых энергосистем, которые состояли из электростанций небольшой и средней мощности, раздельно обслуживающих близлежащие промышленные районы. Когда экономисты подсчитали затраты на их сооружение, выяснилось, что на те же капиталовложения можно было бы создать в 2 — 3 раза большую мощность, если бы строить гидростанции с более крупными агрегатами.
Еще одним резервом развития энергетики оказалось создание магистральных сетей сверхвысоких напряжений — для увеличения пропускной способности линий электропередач и перехода в будущем к Единой объединенной энергосистеме. Основой для объединения энергосистем Советского Союза стали в наше время линии с напряжением в 500 и 750 киловольт. Уже ведутся работы по повышению и этого напряжения до 1150 киловольт.