Современная научная картина мира - Клягин Николай (читать книги онлайн бесплатно полностью без сокращений .TXT) 📗
Представления о расширяющейся Вселенной, родившейся в Большом Взрыве, носят наименование моделей «горячей Вселенной». При расчетах моделей горячей Вселенной используется теоретическая величина постоянной Хаббла H0 = 50 км/с на мегапарсек [611; 673; 705], которой отвечает возраст Вселенной в 13,(3) млрд лет [336]. Эта оценка оптимальна, поскольку независимые от нее определения возраста нашего мира по старым белым карликам в Галактике [550; 792], по тяжелым радиоактивным элементам на звездах [233; 409; 717] и по шаровым скоплениям звезд [235; 404; 475; 792] предусматривают вселенский возраст от 10,3 до13 млрд лет. Поясним, что белые карлики – это крохотные, сверхплотные звезды класса светимости VII, некоторые из которых вдвое старше нашего Солнца. Добавим, что тяжелые радиоактивные элементы имеют тенденцию распадаться. По их остаткам можно определить возраст древних звезд, которые также вдвое старше Солнца. Напомним также, что шаровые скопления – это гало, своего рода шаровидные облака звезд вокруг галактик, и эти звезды населения II также вдвое старше Солнца, т. е. звезды населения I, распространенного не в гало, а в дисках галактик.
Как можно видеть, возраст Вселенной по белым карликам, тяжелым элементам и шаровым скоплениям (13 млрд лет) на 300 млн лет уступает возрасту Вселенной по теоретической постоянной Хаббла (13,(3) млрд лет). Это лишний раз свидетельствует в пользу оптимальности последней величины, ибо 300 млн лет как раз потребовались юной Вселенной для того, чтобы сформировать древнейшие галактики и звезды с будущими белыми карликами и шаровыми скоплениями. Ниже возраст первых сверхскоплений галактик оценен в 200 млн лет после Большого Взрыва, однако они древнее первых звезд, а потому результаты вполне удовлетворительны. Дело в том, что ранние сверхскопления будущих галактик поначалу формировались как крупномасштабные возмущения вселенского вещества ок. 200 млн лет после Большого Взрыва, и лишь затем, ок. 300 млн лет после Большого Взрыва, в них сложились конкретные галактики с древнейшими звездами.
На наш взгляд, существует еще один путь расчета возраста Вселенной. Со времен Большого Взрыва ее внешние границы расширялись со скоростью света. Поделив скорость света на местную скорость вселенского расширения и взяв 2/3 от результата, мы получим нынешний радиус Вселенной в мегапарсеках (и световых годах), а значит и время, затраченное на достижение этого радиуса. При H0 = 50 км/с на мегапарсек радиус Вселенной составляет 13,031 млрд светолет и отличается от предыдущей оценки на 302,4 млн световых лет. Это расхождение означает, что Земля расположена к краю Вселенной на 302,4 млн светолет ближе, нежели ее центр, который отстоит от нас на ту же дистанцию.
Поиск такого центра отталкивается от наблюдения, что Южное полушарие звездного неба ощутимо глубже Северного [546; 695]. Это означает, что на Севере звездной сферы к нам ближе край Вселенной, а на Юге – ее центр. В Южном полушарии звездного неба по направлению к сверхскоплению галактик Гидра-Кентавр на расстоянии ок. 300 млн светолет от нас лежит Великий Аттрактор. Этот объект соответствует 5,4 × 1016 солнечных масс, имеет поперечник в 0,6–6 млн светолет и вдвое превосходит среднюю плотность Вселенной [524; 134; 296; 372, с. 62; 473; 704; 785; 830]; cp. [254].
Сверхмассивный Великий Аттрактор притягивает окружающие скопления галактик, в том числе наше Местное Сверхскопление, которое вместе с соседними сверхскоплениями стремится к Великому Аттрактору («Великому Притяжателю») в составе сверхпотока Персей – Рыбы протяженностью в 423,8 млн светолет [808; 548; 514; 605]. Это означает, что гравитоны Великого Аттрактора успели охватить область Вселенной с диаметром ок. 1 млрд светолет, а стягивающая Вселенную деятельность Великого Аттрактора началась ок. 500 млн лет назад.
Великий Аттрактор отождествляется с рентгеновским галактическим скоплением Абелль 3627, обладающим массой в 5,1 × 1015 солнечных масс и поперечником в 1,956 млн светолет, укладывающимся в поперечник Великого Аттрактора. Абелль 3627 является источником самого яркого рентгеновского потока среди всех известных скоплений (0,1–2,4 кэВ). Его отделяют от нас 303,18 млн светолет [473; 830]. Сравнивая наше расстояние от центра Вселенной (302,375 млн светолет) с расстояниями от Великого Аттрактора (ок. 300 млн светолет) и Абелля 3627 (303,18 млн светолет), мы заключаем, что речь идет об одном и том же образовании, три ипостаси которого выявлены совершенно различными, независимыми методами.
Абелль 3627 в 10 раз уступает расчетной массе Великого Аттрактора, которая определялась гравиметрически (по силе тяжести, т. е. однозначно), в то время как масса Абелля 3627 оценивалась оптически (по внешнему виду, т. е. далеко не однозначно). Расхождение объясняется тем, что 0,9 реальной массы Абелля 3627 состоят из невидимого «темного вещества».
«Холодное темное вещество» не испускает ни тепла, ни света и взаимодействует с обычным «горячим светлым веществом» лишь гравитационно, сильно влияя на движение галактик и их скоплений, но оставаясь невидимым во всех областях спектра. Оно было открыто благодаря одному астрофизическому парадоксу. Наша и другие галактики вращаются столь интенсивно, что центробежная сила могла бы их разметать. Видимой «светлой» массы им совершенно недостаточно, чтобы сцементировать их силой тяжести. Значит, существует некая невидимая «темная» масса, которая восполняет недостачу вещества, необходимого для консолидации галактик силой тяжести. Гравитационные оценки свидетельствуют, что по массе «темное вещество» образует не менее 90% состава Вселенной [333; 431; 581; 617; 629; 664; 739; 760; 783; 785; 795]; cp. [176]. Состав «темного вещества» – проблематичен.
Барионное (кваркосодержащее) «темное вещество» заключено в тусклых холодных белых карликах – это 2% от «темного вещества» галактического гало [604], – а также в МАСНО (массивных, компактных объектах гало планетарных масс), выявляемых методом микролинзирования: в тот момент когда они затмевают внегалактические звезды (галактик Большое Магелланово Облако и М22), те ненадолго ярко вспыхивают, становясь видимыми по обе стороны от затмевающего МАСНО, привлекая наше внимание (МАСНО гравитационно стягивают лучи света от них, выполняя роль маленькой гравитационной линзы, откуда происходит название метода микролинзирования) [133; 376; 665; 666]; cp. [224]. Можно упомянуть еще гипотетические космические струны – сверхмассивные, протяженные объекты замкнутой, петлистой фактуры, сохранившиеся от первой секунды жизни Вселенной, когда они застыли как пограничные состояния ее фазовых переходов (наподобие прожилок на замерзшем стекле, только длиной в световые годы) [22; 132; 167].
В небарионном (бескварковом) «темном веществе» предполагаются аксионы (см. разд. 1.1) [332; 586; 705] и вимпзиллы [360; 376]. Вимпы представляют собой слабо взаимодействующие массивные частицы в 106 ГэВ (гигаэлектронвольт), а вимпзиллы (т. е. вимпы-годзиллы) – это слабо взаимодействующие сверхмассивные частицы в 1012 ГэВ, которые еще предстоит открыть. Сюда же относятся гравитино (см. разд. 1.1) [332; 371, с. 39] и хиггсино (см. разд. 1.1) [371, с. 39; 706]. Называют также нейтралино (суперпартнер фотона со спином 1/2, т. е. аналог фотино, в 10–1000 масс протона) [760] и само фотино в 100 масс протона (см. разд. 1.1) [332; 371, с. 39; 705; 706; 725]. Наконец, популярны снейтрино [371, с. 39], таунейтрино с массой в 17–17,2 кэВ или 15–10000 ГэВ [303; 343; 376; 513; 528; 530; 673; 706; 739] и электронное нейтрино с массой от менее 7 эВ до 30 эВ [740; 760] (см. разд. 1.1).
Перечисленные микрообъекты занесены в состав «темного вещества» как бы наудачу, в ожидании наблюдательных открытий [725]. Между тем обобщенный подход имеется в теории суперструн, где «темному веществу» соответствует «теневое вещество» Е8' из калибровочной группы Е8 × Е8', в которой группа Е8 описывает мир обычного, «светлого вещества» [9, с. 520; 122, с. 583; 472]. Напомним, что калибровочные группы служат математической основой для принятия «к производству» не произвольного набора объектов и их свойств, а их некой математически обоснованной матрицы вроде таблицы умножения. Поскольку вездесущим фоном нашего мира «светлого вещества» является известное реликтовое микроволновое излучение, наполняющее космос и состоящее из фотонов с температурой в 2,726 ± 0,01 К [705; 760], то фоном невидимого мира «темного вещества» могло бы оказаться фотино, и без того присутствующее среди кандидатов на эту грозную роль.