Mybrary.info
mybrary.info » Книги » Научно-образовательная » Философия » История новоевропейской философии в её связи с наукой - Гайденко Пиама Павловна (книги бесплатно без онлайн txt) 📗

История новоевропейской философии в её связи с наукой - Гайденко Пиама Павловна (книги бесплатно без онлайн txt) 📗

Тут можно читать бесплатно История новоевропейской философии в её связи с наукой - Гайденко Пиама Павловна (книги бесплатно без онлайн txt) 📗. Жанр: Философия. Так же Вы можете читать полную версию (весь текст) онлайн без регистрации и SMS на сайте mybrary.info (MYBRARY) или прочесть краткое содержание, предисловие (аннотацию), описание и ознакомиться с отзывами (комментариями) о произведении.
Перейти на страницу:

Те понятия, которые целиком разложимы и могут быть сведены к тождественным утверждениям, или, иначе говоря, которые полностью аналитичны, Лейбниц считает созданными самим умом - ближе всего к таким понятиям, как мы уже знаем, стоит, по Лейбницу, понятие числа. Что же касается геометрических понятий, то они поддаются анализу настолько, насколько в их создании принимает участие ум, и неразложимы в той мере, в какой оказываются основанными на общем чувстве, т.е. на воображении. Именно поэтому доказательство возможности геометрического понятия ведется не через анализ, а через конструкцию, т.е. путем порождения предмета, соответствующего понятию.

4. Конструкция как принцип порождения объекта

Вопрос о достоверности геометрии служил предметом непрекращавшихся споров на протяжении XVI-XVII вв. между представителями схоластики и защитниками новой науки. Схоластики при этом апеллировали к Аристотелю, у которого, как мы знаем, математика обосновывалась иначе, чем в работах Галилея, Декарта, Гоббса и др., поскольку Аристотель не считал ее "первой наукой" и по ее онтологическому статусу ставил после метафизики и физики. В схоластике в качестве аргумента приводилось соображение Аристотеля о том, что, в отличие от метафизики и физики, дающих причинное объяснение явлений, математика не может объяснять из причин.

Критикуя схоластику, создатели науки нового времени пытались показать, что геометрия, на базе которой создавалась механика как основная наука о природе, является самой достоверной и позволяет постигнуть основные законы природы как раз потому, что она дает причинное объяснение. К этой аргументации полностью присоединился и молодой Лейбниц. В письме к Я. Томмазиусу (1669) он пишет: "...если мы рассмотрим дело ближе, то окажется, что геометрия доказывает именно из причин. В самом деле, она выясняет фигуры из движения: из движения точки происходит линия, из движения линии поверхность, из движения поверхности - тело, из движения прямой по прямой происходит плоскость, из движения прямой вокруг неподвижной точки происходит круг и т.п. Таким образом, построение фигур есть движение; свойства же фигур доказываются из построений, т.е. из движения, следовательно, априори и из причин. Значит, геометрия есть настоящая наука".

Такое заключение, однако, возможно при условии признания пространства субстанцией, как это сделал Декарт, - условие, которое не принял бы Аристотель и которое сам Лейбниц впоследствии поставил под сомнение, что и вызвало у него потребность дать иное обоснование геометрии. Уже отсюда ясно, что Лейбниц отнюдь не был первым, кто рассматривал геометрические понятия как результат конструкции. Такой способ понимания геометрических образований был широко распространен в XVII столетии. Так, например, Томас Гоббс, определяя науку как самый достоверный вид знания, пишет: "Наука начинается лишь с того знания, благодаря которому мы постигаем истину, содержащуюся в каком-нибудь утверждении; она есть познание какого-нибудь предмета на основании его причины или познание его возникновения посредством правильной дедукции. Знание есть также правильное понимание возможной истинности какого-нибудь положения: такое понимание мы получаем путем правильного умозаключения из установленных опытом следствий. Оба указанных вида дедукции мы называем обычно доказательствами. Однако первый вид дедукции считают более ценным, чем второй, и для этого есть вполне достойное основание". Гоббс, таким образом, считает самым достоверным видом научного знания тот, который получают на основании знания причины, т.е. порождения предмета, возникновения его. Такое знание из непосредственно очевидных для нас причин более ценно, чем знание на основании заключения из причин прошлых. Это наиболее ценное знание Гоббс называет "демонстративным познанием а priori", и оно, согласно Гоббсу, возможно "лишь относительно тех вещей, возникновение которых зависит от воли самого человека".

Гоббс высказал соображение, которое позднее становится центральным принципом критической философии Канта: мы с достоверностью можем знать только то, что произвели сами. Только при этом Гоббс дает номиналистическое истолкование этому "мы сами", считая, что порождающие причины находятся в воле самого человека. Именно таким путем создаются, как показывает Гоббс, линии и фигуры, составляющие предмет геометрии. "В этом смысле строго доказательной, - пишет Гоббс, - является большая часть положений о величине; наука о них называется геометрией. Так как причина тех свойств, которыми обладают отдельные фигуры, заключается в линиях, которые мы сами проводим, и так как начертание фигур зависит от нашей воли, то для познания любого свойства фигуры требуется лишь, чтобы мы сделали все выводы из той конструкции, которую сами построили при начертании фигуры. То, что геометрия считается демонстративной наукой и действительно является строго доказательной, обусловливается тем обстоятельством, что мы сами рисуем фигуры".

Гоббс, таким образом, объясняет априорность (а тем самым и доказательность, демонстративность) геометрии произвольностью геометрических построений: начертание фигуры зависит от нашей воли.

Но не только Гоббс обосновывает достоверность математического знания указанием на конструированность геометрических понятий; такой же способ рассуждения мы обнаруживаем и у Спинозы, хотя в других отношениях эти два философа и существенно расходятся. Так же как и Гоббс, Спиноза считает, что истинное познание есть познание предмета из его причин. Поэтому адекватным определением геометрического понятия, согласно Спинозе, тоже будет определение его через порождение. Если определить круг "как фигуру, у которой линии, проведенные от центра к окружности, равны, то всякий, говорит Спиноза, - видит, что такое определение совсем не выражает сущности круга, а только некоторое его свойство". Определение, приведенное Спинозой, дано не кем иным, как Евклидом, у которого мы читаем: "Круг есть плоская фигура, содержащаяся внутри одной линии, на которой все из одной точки внутри фигуры падающие прямые равны между собой".

Точно так же, как и Гоббс, Спиноза видит в действии, с помощью которого строится фигура, причину, позволяющую раскрыть саму сущность данной фигуры, а уже из сущности ее можно вывести и ее свойства. "Если данная вещь сотворенная (а несотворенной является только субстанция. - П.Г.), то определение должно будет... содержать ближайшую причину. Например, круг по этому правилу нужно будет определить так: это фигура, описываемая какой-либо линией, один конец которой закреплен, а другой подвижен; это определение ясно охватит ближайшую причину". Именно из определения через конструкцию можно, согласно Спинозе, вывести и такое свойство круга, как одинаковое расстояние всех точек окружности от центра.

Гоббс, Спиноза и Лейбниц, так же как и их античные и средневековые предшественники, видят задачу науки в познании предмета на основании его причины, однако само понимание причины, как видим, меняется. В математике такая причина усматривается в способе порождения математического объекта и - соответственно - его понятия. Представление о том, что в основе достоверного знания о предмете лежит деятельность, производящая этот предмет, возникает, как видим, задолго до Канта. И Спиноза, и Гоббс, несомненно, согласились бы с Кантом в том, что задача геометра "состоит не в исследовании того, что он усматривал в фигуре или в одном лишь ее понятии, как бы прочитывая в ней ее свойства, а в том, чтобы создать фигуру посредством того, что он сам, а priori, сообразно понятиям мысленно вложил в нее и показал (путем построения). Он понял, что иметь о чем-то верное априорное знание он может лишь в том случае, если приписывает вещи только то, что необходимо следует из вложенного в нее им самим сообразно его понятию".

Однако это суждение Спиноза или Гоббс признали бы истинным лишь по отношению к такой науке, как геометрия, но не по отношению к физике. Так, Гоббс проводит решительное различие между математикой как наукой априорной (а потому и полностью доказательной) и физикой как наукой апостериорной, которая не в состоянии все свои выводы сделать столь же необходимыми, как математические. И аргументация Гоббса очень характерна: геометрические фигуры творим мы сами, а природный мир сотворен Богом, и потому мы не в состоянии непосредственно познать сущность явлений из их причин. "То, что геометрия... является строго доказательной, обусловлено тем... что мы сами рисуем фигуры. Предметы же и явления природы, напротив, мы не в состоянии производить по нашему усмотрению. Эти предметы и явления созданы по воле Бога, и, сверх того, большая часть их, например эфир, недоступна нашим взорам. Поэтому мы и не можем выводить их свойства из причин, которых не видим". В результате науки о природе Гоббс не относит к чистым наукам, какими являются математические (арифметика и геометрия), а в соответствии с давней, еще средневековой традицией относит их к наукам прикладным, хотя и математическим. Сюда Гоббс относит, кроме физики, астрономию и музыку. Все эти науки устанавливают причины наблюдаемых в природе явлений, но устанавливают их не непосредственно, а путем умозаключений, косвенно, а потому и причины эти могут иметь только гипотетический характер. "Исходя из видимых нами свойств, мы можем посредством умозаключений познать, что могли существовать те или иные причины этих свойств. Мы называем этот вид доказательства доказательством а posteriori, а науку, применяющую этот метод, - физикой. Поскольку, однако, при познании явлений природы, имеющих своей основой движение, нельзя делать заключений от последующего к предыдущему без знания тех следствий, к которым ведет определенная форма движения, и нельзя делать заключений относительно следствий движения без знания количества, т.е. без геометрии, то и физик необходимым образом вынужден пользоваться кое-где в своей науке методом доказательства а priori. Вот почему физика - я имею в виду настоящую физику, построенную на математике, - обычно причисляется к прикладным математическим наукам".

Перейти на страницу:

Гайденко Пиама Павловна читать все книги автора по порядку

Гайденко Пиама Павловна - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки mybrary.info.


История новоевропейской философии в её связи с наукой отзывы

Отзывы читателей о книге История новоевропейской философии в её связи с наукой, автор: Гайденко Пиама Павловна. Читайте комментарии и мнения людей о произведении.


Уважаемые читатели и просто посетители нашей библиотеки! Просим Вас придерживаться определенных правил при комментировании литературных произведений.

  • 1. Просьба отказаться от дискриминационных высказываний. Мы защищаем право наших читателей свободно выражать свою точку зрения. Вместе с тем мы не терпим агрессии. На сайте запрещено оставлять комментарий, который содержит унизительные высказывания или призывы к насилию по отношению к отдельным лицам или группам людей на основании их расы, этнического происхождения, вероисповедания, недееспособности, пола, возраста, статуса ветерана, касты или сексуальной ориентации.
  • 2. Просьба отказаться от оскорблений, угроз и запугиваний.
  • 3. Просьба отказаться от нецензурной лексики.
  • 4. Просьба вести себя максимально корректно как по отношению к авторам, так и по отношению к другим читателям и их комментариям.

Надеемся на Ваше понимание и благоразумие. С уважением, администратор mybrary.info.


Прокомментировать
Подтвердите что вы не робот:*