Mybrary.info
mybrary.info » Книги » Научно-образовательная » Философия » Паутина жизни. Новое научное понимание живых систем - Капра Фритьоф (читаем бесплатно книги полностью TXT) 📗

Паутина жизни. Новое научное понимание живых систем - Капра Фритьоф (читаем бесплатно книги полностью TXT) 📗

Тут можно читать бесплатно Паутина жизни. Новое научное понимание живых систем - Капра Фритьоф (читаем бесплатно книги полностью TXT) 📗. Жанр: Философия. Так же Вы можете читать полную версию (весь текст) онлайн без регистрации и SMS на сайте mybrary.info (MYBRARY) или прочесть краткое содержание, предисловие (аннотацию), описание и ознакомиться с отзывами (комментариями) о произведении.
Перейти на страницу:

Некоторые из ферментаторов выработали, помимо этого, способность поглощать азот из воздуха и перерабатывать его в различные органические соединения. Связывание азота, т. е. непосредственный захват его из воздуха, требует огромных затрат энергии, и даже сегодня эта задача под силу лишь немногим специализированным бактериям. Поскольку азот является ингредиентом протеинов во всех клетках, все ныне существующие организмы для своего выживания нуждаются в бактериях, связывающих азот.

В самом начале эпохи бактерий фотосинтез — «несомненно самое важное метаболическое усовершенствование в истории жизни на планете»27 — стал первичным резервом жизненной энергии. Первые процессы фотосинтеза, изобретенные бактериями, отличались от тех, что сегодня происходят в растениях. Вместо воды в качестве источника водорода они использовали сероводород — газ, источаемый вулканами. Они соединяли его с солнечным светом и СО2 воздуха, образуя органические соединения, и никогда не вырабатывали кислород.

Эти адаптивные стратегии не только позволяли бактериям выживать и развиваться, но и постепенно начали изменять окружающую их среду. Фактически именно бактерии, почти с самого начала своего существования, сформировали первые петли обратной связи, которые в конце концов должны были неминуемо привести к появлению тесно взаимосвязанной системы — жизни и ее окружения. И хотя химия и климат ранней Земли способствовали развитию жизни, это благоприятное состояние не могло бы поддерживаться бесконечно долго без бактериальной регуляции28.

По мере того как железо и другие элементы вступали в реакции с водой, высвобождался газообразный водород; он поднимался сквозь атмосферу, где разлагался на атомы. Поскольку эти атомы слишком легки для того, чтобы их удерживало земное тяготение, весь водород должен был улетучиться, учитывая бесконтрольность процесса; через какой-нибудь миллиард лет всем океанам на планете предстояло исчезнуть. К счастью, вмешалась жизнь. На поздних стадиях фотосинтеза стал высвобождаться и поступать в воздух свободный кислород, как это происходит и сегодня, и некоторая его часть соединялась с восходящими потоками газообразного водорода, образуя при этом воду; так сохранялся определенный уровень влажности на планете и предотвращалось испарение океанов.

Тем не менее постоянный отбор СО2 из атмосферы в процессе фотосинтеза вызвал другую проблему. В начале эпохи бактерий энергия солнечного излучения была на 25% меньше, чем сейчас, и СО2 в атмосфере был совершенно необходим, чтобы создавать тепличный эффект и поддерживать температуру планеты в приемлемом диапазоне. Если бы отбор СО2 происходил без какой-либо компенсации, Земля бы замерзла и ранние формы бактерий погибли бы.

Эта опасная тенденция была остановлена ферментирующими бактериями, которые, возможно, сформировались еще до появления фотосинтеза. В процессе производства молекул АТФ из Сахаров ферментаторы также вырабатывали метан и СО2 в виде отходов. Последние поступали в атмосферу, где и восстанавливали планетарный тепличный эффект. Таким образом, ферментация и фотосинтез стали взаимно балансирующими процессами системы ранней Гайи.

Солнечный свет, проходивший сквозь атмосферу древней Земли, все еще содержал обжигающую ультрафиолетовую радиацию, и теперь бактериям приходилось балансировать между защитой от облучения и необходимостью получать солнечную энергию для фотосинтеза. Это привело к эволюции многочисленных сенсорных систем и двигательных механизмов. Некоторые виды бактерий мигрировали в воды, богатые определенными солями, выполнявшими роль солнечных фильтров; другие нашли защиту в песке; а некоторые тем временем развили пигменты, в которых поглощались вредоносные лучи. Многие виды организовывали огромные колонии — многослойные «скатерти» из микробов, где верхние слои обжигались и умирали, но защищали нижний слой своими мертвыми телами29.

Помимо защитной фильтрации, бактерии выработали также механизмы для починки ДНК, поврежденных радиацией, в том числе специально для этого предназначенные ферменты. Сегодня почти все организмы по-прежнему содержат в себе такие «ферменты-ремонтники» — еще одно пережившее миллиарды лет изобретение микрокосмоса30.

Вместо того чтобы использовать для починки собственный генетический материал, бактерии иногда заимствовали фрагменты ДНК у своих соседей по густонаселенному окружению. Этот метод постепенно эволюционировал в непрерывный обмен генами, который и определил самое эффективное направление эволюции бактерий. У высших форм жизни рекомбинация генов различных особей связана с воспроизведением, но в мире бактерий два эти феномена протекают независимо. Бактериальные клетки воспроизводятся бесполым путем, но зато они непрерывно обмениваются генами. По словам Маргулис и Саган,

Мы обмениваемся генами «вертикально» — через поколения, — тогда как бактерии меняются ими «горизонтально» — непосредственно со своими соседями из того же поколения. В результате получается, что генетически неустойчивые бактерии функционально бессмертны, а для эукариотов пол связан со смертью31.

Из-за небольшого числа постоянных генов в бактериальной клетке — как правило, меньше одного процента от числа генов в ядерной клетке — бактерии по необходимости работают командами. Разные виды сотрудничают и помогают друг другу, предоставляя дополнительный генетический материал. Крупные сообщества таких бактериальных команд могут функционировать с согласованностью единого организма, выполняя задачи, которые индивидуально не под силу никакой из них.

К концу первого миллиарда лет с момента возникновения жизни Земля кишела бактериями. Были изобретены тысячи биотехнологий — большинство из них, безусловно, известно сегодня, — и, посредством сотрудничества и непрерывного обмена генами, микроорганизмы начали регулировать условия для жизни на всей планете, как они делают это и поныне. Фактически многие виды бактерий ранней эпохи микрокосма дожили, существенно не изменившись, до наших дней.

В ходе последующих стадий эволюции, микроорганизмы образовывали союзы и эволюционировали совместно с растениями и животными, и сегодня наша окружающая среда в такой степени переполнена бактериями, что почти невозможно определить, где кончается неодушевленный мир и где начинается жизнь. Мы склонны ассоциировать бактерии с болезнью, но они жизненно важны и для нашего выживания, равно как и для выживания животных и растений. «Если отбросить в сторону наши поверхностные различия, можно сказать, что все мы представляем собой ходячие сообщества бактерий, — пишут Маргулис и Саган. — Весь мир мерцает, как ландшафт пуантилиста, составленный из крошечных живых существ»32.

Кислородный кризис

Вследствие того, что бактериальная паутина разворачивалась и заполняла все доступные пространства в водах, скалах и грязевых низинах, ее энергетические потребности привели к серьезному водородному истощению атмосферы. Углеводы, играющие существенную роль во всех процессах жизни, представляют собой сложные структуры из атомов углерода, водорода и кислорода. Чтобы построить эти структуры, фотосинтезирующие бактерии извлекали углерод и кислород в виде СО2, подобно современным растениям. Кроме того, они получали водород в форме газа из воздуха и из сероводорода, извергающегося из вулканов. Однако легкий газообразный водород продолжал улетучиваться в космос, и со временем одного сероводорода стало недоставать.

Огромное количество водорода, конечно, есть в воде (Н2О), однако связи между молекулами водорода и кислорода в воде гораздо прочнее, чем между двумя атомами водорода в его газе (Н2) или в сероводороде (H2S). Бактерии, осуществляющие фотосинтез, не были способны разорвать эти крепкие связи, пока особый вид сине-зеленых бактерий не изобрел новый тип фотосинтеза, который навсегда решил проблему водорода.

Новый эволюционный тип бактерий, предков современных сине-зеленых водорослей, использовал солнечный свет с более высокой энергией (с более короткими длинами волн) для того, чтобы расщеплять молекулы воды на составляющие их водород и кислород. Они забирали водород для формирования Сахаров и других углеводов, а кислород уходил в воздух. Это изъятие водорода из воды, представляющей один из наиболее обильных ресурсов планеты, стало чрезвычайной эволюционной победой, которая очень глубоко повлияла на последующее раскрытие жизни. И Линн Маргулис убеждена в том, что «пришествие кислородного фотосинтеза было тем исключительным событием, которое в конечном итоге привело к формированию нашей современной окружающей среды»33.

Перейти на страницу:

Капра Фритьоф читать все книги автора по порядку

Капра Фритьоф - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки mybrary.info.


Паутина жизни. Новое научное понимание живых систем отзывы

Отзывы читателей о книге Паутина жизни. Новое научное понимание живых систем, автор: Капра Фритьоф. Читайте комментарии и мнения людей о произведении.


Уважаемые читатели и просто посетители нашей библиотеки! Просим Вас придерживаться определенных правил при комментировании литературных произведений.

  • 1. Просьба отказаться от дискриминационных высказываний. Мы защищаем право наших читателей свободно выражать свою точку зрения. Вместе с тем мы не терпим агрессии. На сайте запрещено оставлять комментарий, который содержит унизительные высказывания или призывы к насилию по отношению к отдельным лицам или группам людей на основании их расы, этнического происхождения, вероисповедания, недееспособности, пола, возраста, статуса ветерана, касты или сексуальной ориентации.
  • 2. Просьба отказаться от оскорблений, угроз и запугиваний.
  • 3. Просьба отказаться от нецензурной лексики.
  • 4. Просьба вести себя максимально корректно как по отношению к авторам, так и по отношению к другим читателям и их комментариям.

Надеемся на Ваше понимание и благоразумие. С уважением, администратор mybrary.info.


Прокомментировать
Подтвердите что вы не робот:*