Сочинения - Беркли Джорж (смотреть онлайн бесплатно книга .txt) 📗
195
122. Итак, в арифметике мы рассматриваем не вещи, а знаки, которые, однако, подвергаются исследованию не ради их самих, но потому, что они показывают нам, как следует поступать относительно вещей и правильно ими распоряжаться. Но согласно с тем, что уже было замечено нами о словах вообще (§ 19 Введения), здесь также оказывается, что абстрактные идеи мыслятся обозначаемыми через знаки или названия чисел, так как последние не возбуждают в наших умах идей отдельных вещей. Я не намерен теперь вдаваться в более специальное рассуждение по этому предмету, но замечу только, что из сказанного выше ясно видно, что то, что признается за абстрактные истины и теоремы относительно чисел, в действительности не относится ни к какому предмету, отличному от отдельных исчисляемых вещей, за исключением лишь имей и цифр, которые первоначально рассматривались только в смысле знаков, способных обозначать соответствующим образом все отдельные вещи, подлежащие человеческому счету. Из чего следует, что изучать их ради них самих значило бы поступать так же мудро и с таким же благим намерением, как если бы кто-нибудь, пренебрегая надлежащим употреблением или первоначальной целью и задачами языка, стал тратить свое время на непристойную критику слов или чисто словесные соображения и споры.
123. От числа мы переходим теперь к разговору о протяжении, составляющем предмет геометрии. Бесконечная делимость конечного протяжения, хотя она не выражается прямо ни как аксиома, ни как теорема в принципах этой науки, везде ею предполагается и мыслится в такой неразрывной и существенной связи с принципами и доказательствами геометрии, что математики никогда не подвергают ее сомнению или вопросу. и в той же мере, в какой именно это понятие есть источник, откуда вытекают все те забавные геометрические парадоксы, которые находятся в таком прямом противоречии с обычным человеческим здравым смыслом и лишь с большим сопротивлением принимаются умом, не развращенным ученостью, оно служит главным поводом той чрезмерной утонченности, которая делает изучение математики столь трудным и скучным. Поэтому, если мы окажемся в состоянии показать, что никакое конечное протяжение не содержит бесконечного числа частей или не делимо до бесконечности, то отсюда следует, что мы однажды навсегда освободим науку геометрии от множества затруднений и противоречий, которые всегда считались упреком человеческому разуму, и вместе с тем сделаем изучение ее делом несравненно меньшего времени и труда, чем это было до сих пор.
196
124. Каждое отдельное конечное протяжение, которое может служить предметом нашего мышления, есть идея, существующая лишь в нашем уме, и, следовательно, любая его часть должна быть воспринимаема. Если поэтому я не могу воспринять бесконечное множество частей в каком-либо конечном, рассматриваемом мной, протяжении, то несомненно, что они в нем не содержатся; по очевидно, что я не в состоянии различить бесчисленное множество частей в отдельной линии, поверхности или теле, воспринимаю ли я их в ощущении или представляю себе в моем уме, из чего заключаю, что они пе содержатся там. Ничто не может быть для меня яснее того, что рассматриваемые протяжения суть не что иное, как моп собственные идеи; и не менее ясно, что я не могу разложить какую-либо из своих идей на бесконечное число других идей, т. е. что они не делимы до бесконечности. Если под конечным протяжением подразумевается нечто отличное от конечной идеи, то я объявляю, что не знаю, что это такое, и, следовательно, не могу ни утверждать, ни отрицать чего-либо о нем. Но если термины «протяжение», «части» и т. п. берутся в понятном смысле, т. е. в смысле идей, то сказать, что конечная величина или конечное протяжение состоит из частей бесконечных по числу, есть столь явное и вопиющее противоречие, что каждый с первого взгляда признает его за таковое; и невозможно, чтобы с этим мнением когда-либо согласилось какое-нибудь разумное существо, если только оно не будет подготовлено к нему постепенными незначительными переходами, как новообращенный язычник к вере в пресуществление. Старые и закоренелые предрассудки часто приобретают значение принципов, а такие положения, которые раз приобрели силу и значение принципов, не только сами, но вместе с ними и все то, что может быть из них выведено, считаются изъятыми из исследования. и нет такой бессмыслицы, которая не могла бы быть принята, если ум таким образом к ней подготовлен.
197
125. Тот, чей ум находится под господством учения об абстрактных общих идеях, легко может быть убежден в том, что (как бы ни мыслить об идеях ощущений) абстрактное протяжение делимо до бесконечности. и всякий, кто полагает, что ощущаемые предметы существуют вне духа, не затруднится утверждать, что линия длиной всего в дюйм может заключать в себе бесчисленное мно: жество частей, которые действительно существуют, хотя слишком малы, чтобы быть различаемы. Эти заблуждения укоренились в умах как геометров, так и прочих людей и оказывают одинаковое влияние на их рассуждения; и было бы нетрудно показать, как доказательства, употребляемые геометрией в подтверждение бесконечной делимости протяжения, основываются на этих заблуждениях. Но об этом, если то окажется необходимым, мы можем найти удобный случай поговорить особо. Теперь мы только в целом укажем, почему все математики так преисполнены этим учением и упорны в нем.
126. Было замечено в другом месте (§15 Введ[ения]), что теоремы и доказательства геометрии касаются общих идей, причем было объяснено, в каком смысле это следует понимать, а именно в том, что отдельные линии и фигуры в чертеже предполагаются заменяющими бесчисленное множество других линий и фигур различной величины, или, иными словами, геометр рассматривает их, отвлекая от них величины, что подразумевает не то, что он образовал абстрактную идею, а только то, что он не заботится о величине, в частности велика ли она или мала, но считает это безразличным для доказательства. Отсюда следует, что о линии, имеющей на чертеже всего один дюйм длины, надо говорить так, как будто она содержит девять тысяч частей, поскольку она рассматривается не сама по себе, но как общая; но она обща лишь по значению, поскольку она Собой представляет бесчисленные линии, большие, чем она, в которых можно различить десять тысяч и более частей, хотя они могут быть не длиннее дюйма. Таким путем свойства обозначенных линий по весьма обычному приему переносятся на знак и потому по заблуждению как бы мыслятся принадлежащими ему в силу его собственной природы.
198
127. Так как нет такого большого числа частей, чтобы не могло быть линии, которая содержала бы их еще более, то говорится, что линия в дюйм длиной содержит частей более всякого данного их числа, что справедливо, но относительно не дюйма, как такового, а только того, что им обозначается. Но люди, не соблюдая этого различия в своих мыслях, подпадают под убеждение, будто небольшая данная линия, начертанная на бумаге, зaключает, как таковая, бесконечное число частей. Нет такой вещи, как десятитысячная часть дюйма, но есть десятитысячная часть мили или диаметра земли, которые могут быть обозначены этим дюймом. Когда я поэтому черчу на бумаге треугольник и приму величину одной из его сторон, которая не длиннее дюйма, равной радиусу (Земли), то я предполагаю ее разделенной на десять, на сто и более тысяч частей; ибо хотя десятитысячная часть этой линии, рассматриваемая сама по себе, есть ничто и ею, следовательно, можно пренебречь без всякой погрешности или неудобства, но так как эти начертанные линии суть лишь знаки, заменяющие большие величины, десятитысячная часть которых может быть весьма значительная, то отсюда следует, что во избежание заметных ошибок на практике радиус должен быть признан содержащим в себе 10 000 или более частей.
128. Из сказанного ясно, почему для сообщения теоремам всеобщего применения мы должны говорить о начертанных на бумаге линиях так, как будто они содержат части, которых в действительности не имеют. Поступая таким образом, мы при точном исследовании найдем, быть может, что не в состоянии представить себе сам дюйм состоящим из тысячи частей или делимым на тысячу частей, а относим это представление к некоторой другой линии, которая гораздо больше дюйма и обозначается им, и что, говоря, будто линия делима до бесконечности, мы подразумеваем (если только действительно что-либо подразумеваем) бесконечно большую линию. В сказанном заключается, по-видимому, главная причина того, почему в геометрии признается необходимым предположение бесконечной делимости конечного протяжения.