Тени разума. В поисках науки о сознании - Пенроуз Роджер (книги онлайн полные версии бесплатно .TXT) 📗
При представлении на ленте натуральных чисел (будь то входные или выходные данные) иногда удобнее использовать так называемую расширенную двоичнуюзапись, согласно которой число, в сущности, записывается в обычной двоичной системе счисления, только двоичный знак «1» представляется символами 10, а двоичный знак «0» — символом 0. Таким образом, мы получаем следующую схему перевода десятичных чисел в расширенные двоичные:
0 ↔ 0
1 ↔ 10
2 ↔ 100
3 ↔ 1010
4 ↔ 1000
5 ↔ 10010
6 ↔ 10100
7 ↔ 101010
8 ↔ 10000
9 ↔ 100010
10 ↔ 100100
11 ↔ 1001010
12 ↔ 101000
13 ↔ 1010010
14 ↔ 1010100
15 ↔ 10101010
16 ↔ 100000
17 ↔ 1000010
и т.д.
Заметим, что в расширенной двоичной записи символы 1никогда не встречаются рядом. Таким образом, последовательность из двух или более 1вполне может послужить сигналом о начале и конце записи натурального числа. То есть для записи всевозможных команд на ленте мы можем использовать последовательности типа 110, 1110, 11110и т.д.
Отметки на ленте также можно использовать для спецификации конкретных машин Тьюринга. Это необходимо, когда мы рассматриваем работу универсальноймашины Тьюринга U. Универсальная машина Uработает с лентой, начальная часть которой содержит подробную спецификацию некоторой конкретной машины Тьюринга T, которую универсальной машине предстоит смоделировать. Данные, с которыми должна работать сама машина T, подаются в Uвслед за тем участком ленты, который определяет машину T. Для спецификации машины Tможно использовать последовательности 110, 1110и 11110, которые будут обозначать, соответственно, различные команды для считывающего устройства машины T, например: переместиться по ленте на один шаг вправо, на один шаг влево, либо остановиться, сдвинувшись на один шаг вправо:
R↔ 110
L↔ 1110
STOP ↔ 11110.
Каждой такой команде предшествует либо символ 0, либо последовательность 10, что означает, что считывающее устройство должно пометить ленту, соответственно, либо символом 0, либо 1, заменив тот символ, который оно только что считало. Непосредственно перед вышеупомянутыми 0или 10 располагается расширенное двоичное выражение числа, описывающего следующее внутреннее состояние, в которое должна перейти машина Тьюринга согласно этой самой команде. (Отметим, что внутренние состояния, поскольку количество их конечно, можно обозначать последовательными натуральными числами 0, 1, 2, 3, 4, 5, 6, …, N. При кодировании на ленте для обозначения этих чисел будет использоваться расширенная двоичная запись.)
Конкретная команда, к которой относится данная операция, определяется внутренним состоянием машины перед началом считывания ленты и собственно символами 0или 1, которые наше устройство при следующем шаге считает и, возможно, изменит. Например, частью описания машины T может оказаться команда 23 0→ 17 1R, что означает следующее: «Если машина Tнаходится во внутреннем состоянии 23, а считывающее устройство встречает на ленте символ 0, то его следует заменить символом 1, перейти во внутреннее состояние 17 и переместиться по ленте на один шаг вправо». В этом случае часть «17 1R» данной команды будет кодироваться последовательностью 100001010110. Разбив ее на участки 1000010.10.110, мы видим, что первый из них представляет собой расширенную двоичную запись числа 17, второй кодирует отметку 1на ленте, а третий — команду «переместиться на шаг вправо». А как нам описать предыдущее внутреннее состояние (в данном случае 23) и считываемую в соответствующий момент отметку на ленте (в данном случае 0)? При желании можно задать их так же явно с помощью расширенной двоичной записи. Однако на самом деле в этом нет необходимости, поскольку для этого будет достаточно упорядочить различные команды в виде цифровой последовательности (например, такой: 0 0→, 0 1→, 1 0→, 1 1→, 2 0→, 2 1→, 3 0→, …).
К этому, в сущности, и сводится все кодирование машин Тьюринга, предложенное в НРК, однако для завершенности картины необходимо добавить еще несколько пунктов. Прежде всего, следует проследить за тем, чтобы каждому внутреннему состоянию, действующему на отметки 0и 1(не забывая, впрочем, о том, что команда для внутреннего состояния с наибольшим номером, действующая на 1, оказывается необходимой не всегда), была сопоставлена какая-либо команда. Если та или иная команда вообще не используется в программе, то необходимо заменить ее «пустышкой». Предположим, например, что в ходе выполнения программы внутреннему состоянию 23 нигде не придется сталкиваться с отметкой 1— соответствующая команда-пустышка в этом случае может иметь следующий вид: 23 1→ 0 0R.
Согласно вышеприведенным предписаниям, в кодированной спецификации машины Тьюринга на ленте пара символов 0 0должна быть представлена последовательностью 00, однако можно поступить более экономно и записать просто 0, что явится ничуть не менее однозначным разделителем двух последовательностей, составленных из более чем одного символа 1 подряд [18]. Машина Тьюринга начинает работу, находясь во внутреннем состоянии 0; считывающее устройство движется по ленте, сохраняя это внутреннее состояние до тех пор, пока не встретит первый символ 1. Это обусловлено допущением, что в набор команд машины Тьюринга всегда входит операция 0 0→ 0 0R. Таким образом, в действительной спецификации машины Тьюринга в виде последовательности 0и 1явного задания этой команды не требуется; вместо этого мы начнем с команды 0 1→ X, где Xобозначает первую нетривиальную операцию запущенной машины, т.е. первый символ 1, встретившийся ей на ленте. Это значит, что начальную последовательность 110(команду → 0 0R), которая в противном случае непременно присутствовала бы в определяющей машину Тьюринга последовательности, можно спокойно удалить. Более того, в такой спецификации мы будем всегда удалять и завершающую последовательность 110, так как она одинакова для всех машин Тьюринга.
Получаемая в результате последовательность символов 0и 1представляет собой самую обыкновенную (т.е. нерасширенную) двоичную запись номера машины Тьюринга nдля данной машины (см. главу 2 НРК). Мы называем ее n-й машиной Тьюринга и обозначаем T= T n. Каждый такой двоичный номер (с добавлением в конце последовательности 110) есть последовательность символов 0и 1, в которой нигде не встречается более четырех 1подряд. Номер n, не удовлетворяющий данному условию, определяет «фиктивную машину Тьюринга», которая прекратит работать, как только встретит «команду», содержащую более четырех 1. Такую машину « T n» мы будем называть некорректно определенной. Ее работа с какой угодно лентой является по определениюнезавершающейся. Аналогично, если действующая машина Тьюринга встретит команду перехода в состояние, определенное числом, большим всех тех чисел, для которых были явно заданы возможные последующие действия, то она также «зависнет»: такую машину мы будем полагать «фиктивной», а ее работу — незавершающейся. (Всех этих неудобств можно без особого труда избежать с помощью тех или иных технических средств, однако реальной необходимости в этом нет; см. §2.6, Q4).