Инфодинамика, Обобщённая энтропия и негэнтропия - Лийв Э Х (читаемые книги читать txt) 📗
НЕЛИНЕЙНОСТЬ. Все явления и механизмы пове-дения систем в мире в принципе являются нелиней-ными. Причиной этого в первую очередь является то, что реальные системы содержат многомерную ОНГ, т.е. структурные элементы или выраженную память (связанную информацию). В результате памяти (ОНГ) в реакциях всех систем на внешние воз-действия учитываются не только воздействия в данный момент, но и все воздействия в прошлом. Учитывать необходимо также рассеяние информации со временем. Линейные формулы справедливы только в приближённых моделях на 2-3-мерном пространстве в очень узкой области (законы Ома, Гука и др.). Итоговые балансы движения вещества, энергии, денег через систему в определённый период времени по существу описываются линейными уравнениями. Од-нако для того, чтобы из них можно было бы раз-работать динамические модели развития, необходимо их дополнить негэнтропийными балансами. Послед-ние учитывают вероятностные факторы через задан-ное время. Составляя совместную систему вещест-венных, энергетических денежных и негэнтропий-ческих балансов для различных периодов времени можно получить более гомоморфные модели и соста-вить прогнозы развития системы в будущем. Су-щественно то, что включение балансов ОЭ и ОНГ увеличивает в моделях долю линейных зависимостей и упрощает расчёты.
ДИССИПАТИВНЫЕ СТРУКТУРЫ. Открытые неравновесные структуры, которые за счёт рассеяния энергии (и вещества) создают и сохраняют свою собственную структуру. В итоге растут ОНГ системы и ОЭ окружающей среды за счёт понижения качества протекающей через неё энергии и вещества. Дисси-пативная структура - более общее понятие, чем само-организующаяся система и захватывает также соз-данные человеком структуры. Например, лазер-уста-новки являются диссипативными структурами, но соз-данными человеком специально (не самостоятельно возникшие) с введением конструктивного ОНГ.
БИФУРКАЦИЯ. Превращение и развитие систем происходят по нелинейным уравнениям, которые в критических точках могут иметь два или больше решений. Уже обычное квадратное уравнение с двумя переменными имеет два решения, тем более решений имеют уравнения более высокого порядка. Для уравнений, описывающих состояние системы, харак-терно, что при непрерывном изменении переменных параметров они имеют в определённый момент в точке бифуркации, в два или более решения. В точке би-фуркации невозможно предсказать, по какому пути происходит дальнейшее развитие системы. Это является одним из источников вероятностных процессов в системе и даёт поискам случайный характер.
НЕГЭНТРОПИЙНЫЕ ПРЕДПОСЫЛКИ
САМООРГАНИЗАЦИИ
Основными предпосылками возникновения и эволюции самоорганизующихся систем можно считать следующие условия.
1. Должны существовать источники, снабжающие сис-тему веществом или излучением, обладающими высокой ОНГ и их запасы.
2. Должна быть предусмотрена возможность избавления от отходов, характеризующихся низкой ОНГ. Должно су-ществовать место и возможность протекания процессов, уводящие туда деградированную ОНГ.
3. Должно быть обеспечено долговременное сущест-вование упорядоченной и организованной системы.
Кроме основных предпосылок имеются ещё ряд до-полнительных положительно влияющих факторов:
1. Открытость системы. Это вытекает уже из основных предпосылок. Однако, открытость должна быть дифферен-цированной и обеспечить поток именно необходимых мате-риалов, энергии, ОНГ.
2. Наличие внутрисистемных ресурсов, системность. Инструктивные свойства (ОНГ) системы на микроуровне. Переход энергии и ОНГ из микроуровня на макроуровень.
3. Внутрисистемные механизмы структурирования хаоса (ОЭ) с возбуждением имманентных закономерностей (ОНГ), которые начинают упорядочить хаос.
4. Сильно неравновесная структура. Обуславливает не-обратимость протекающих процессов.
5. Наличие в системе диссипативной структуры. Содер-жание элементов, способных локальной самоорганизации при притоке энергии и ОНГ.
6. Нелинейность процессов, что обуславливает их мно-говариантность, альтернативность. Уравнения должны описы-вать совмещение различных видов структурных элементов, тенденций физических процессов к неустойчивости, к хаоти-ческому движению.
7. Совместное протекание или взаимодействие раз-личных процессов, например, когеренции или резонанса.
8. Широкий диапазон флуктуации, которые являются источником разрушения старых и возникновения новых структур вещества, энергии, ОНГ. Они дают процессам слу-чайный, но вероятностно-закономерный характер. Разде-ляются флуктуации по амплитуде и направлению отклонений. Частицы с большей массой, энергией и ОНГ притягивают более мелкие частицы, укрупняются и процесс структуро-образования ускоряется. Чем больше свобода выбора (раз-нообразие, многомерность, ОЭ), тем меньше вероятность при поиске попасть случайно на одну определённую координату. Тем больший эффект даёт небольшое изменение вероятности выбора. Здесь остро выявляется борьба между возмож-ностями и законы конкуренции. Особый интерес вызывают явления, где флуктуировать могут не только структуры ве-щества, но также энергетические поля и информационные каналы. Представляют интерес исследования процессов флук-туаций ОЭ и ОНГ в системах.
9. Развитие существенно ускоряется, если структура может обеспечить автокаталитический рост количества новых элементов. Это значит, что имеется положительная обратная связь между элементами. Каждый новый элемент вызывает возникновение ещё нескольких новых элементов.
10. Положительно влияют и такие особенности струк-туры, как способность к адаптации, множество точек бифур-кации, открытость инфоканалов и др.
ИСКАЖЁННОЕ ИСТОЛКОВАНИЕ ПРИНЦИПОВ
СИНЕРГЕТИКИ
Во многих публикациях встречается одностороннее ис-толкование принципов синергетики, выдвижение некоторых терминов в абсолют. Это может привести некоторых неспе-циалистов к неправильным выводам. Основые искажения следующие.
1. Развитие идёт в условиях хаоса. В действительности в синергетике слово хаос обозначает только увеличение как фактической, так и максимально возможной ОЭ, разно-образия, многомерности. Однако, параллельно с частичным хаосом идут и процессы по имманентным закономерностям, процессы увеличения ОНГ.
2. В системе преобладает неопределённость, то есть от-сутствие системности приведёт к разрушениям. В действи-тельности в любой системе имеся элементы структуры, закономерности, ОНГ.
3. Случайность везде существует, но её нельзя абсо-лютировать. Параллельно действуют законы природы и ОНГ.
4. Свобода - эффективный фактор для прогресса, но не везде и не для всех. Её ограничивают обязательства, от-ветственность, требования компетентности, законы природы и общества.
5. Отсутствие причинности в отдельных точках компен-сируется наличием более общих закономерностей и критериев выбора.
6. Невозможность прогнозирования путей развития сис-темы. В действительности для этого создаются новые методы, например стохастическое программирование, эвристические методы, экспертные системы, балансы ОЭ и ОНГ.
7. Неустойчивость и разрушение структур. В действи-тельности параллельно идёт возникновение новых структур.
8. Наличие флуктуации как будто обуславливает систематическое отклонение системы от оптимального сос-тояния. В действительности флуктуации дают возможность развиваться системам в оптимальном направлении, так как в системе действуют критерии эффективности. По ним наиболее эффективные флуктуации получают права жизни и обуслав-ливают движение структур в направлении оптимальности.
9. Системы неуправляемые из-за неопределённостей в точках бифуркации. В действительности системы в близости точке бифуркации очень чувствительные к всяким, даже очень слабым воздействиям. Это можно использовать для оптимального управления системами или для объяснения поведения систем под действием ничтожно малых сигналов, например изменений гравитационного поля. Вероятность того, что система находится близ точки бифуркации намного больше, чем её положение точно в этой точке.