Инфодинамика, Обобщённая энтропия и негэнтропия - Лийв Э Х (читаемые книги читать txt) 📗
6. В информационно тесно связанной системе умень-шение её ОНГ может привести к увеличению ОНГ связанных элементов, которые перенимают основные функции первого элемента.
7. Качество информации является динамическим много-мерным понятием, которое зависит от многих факторов, в т.ч. от инструктивных свойств, степени неизбыточности и незаме-нимости информации, от "потребности" и шкалы ценности, а также от скорости и степени повышения ОНГ принимающей системы, от правильного выбора момента и адреса передачи информации с понятным ему кодом. Полнота информации по качеству зависит во многом от объёма, цели и уровня ОНГ принимающей системы, а также от размерностей её структуры и моделей.
8. Динамическая, стабильно развивающаяся система, для сохранения или увеличения своей ОНГ, должна получить больше информации, чем её рассеивается со соответственным увеличением ОЭ. Для исследования потоков информации и скорости их передачи, с учётом локальных особенностей, не-обходимо составление балансов ОЭ и ОНГ на разных иерар-хических уровнях структуры систем.
9. В экономических системах наиболее динамичным по-казателем ОНГ является собственность, в т.ч. и интел-лектуальная. Она характеризует и показывает прежде всего информационную деятельность собственника (юридического или физического), его знаний, умение предвидеть развитие и потребности общества в будущем. Собственность является ре-зультатом и оценкой труда хозяина и его борьбы за приз-нание этого труда. В зависимости от содержания в ней ОНГ собственность может быть прибыльной или убыточной, может давать доход или убытки, может представлять интерес или вызывать осуждение в обществе.
Если бы закон термодинамики об увеличении энтропии мог бы действовать без ограничений, то универсум давно пре-терпел бы "тепловую смерть". К счастью в мире есть много мощных источников ОНГ и информации, которые действуют и превращаются по законам, пока мало изученным. При раз-витии инфодинамики, очевидно, ряд вышеизложенных прин-ципов получают более точные и универсальные форму-лировки. Дальнейшей переработки требуют вопросы об уси-лении передач информации при совместном действии систем, о самопроизвольной передаче информации, о многофактор-ности информации, о её стоимости, ценности, рассеянии и др.
Для практического применения не всегда нужно ждать до выяснения всех подробностей при передаче информации и ОНГ. Ряд существенных выводов можно сделать и при применении имеющихся приближённых или вероятностных моделей. С их помощью можно при выборе вариантов отсеи-вать явно негодные комбинации исходных факторов, тем самым существенно сократив области дальнейших иссле-дований или предотвратить явно отрицательные результаты, прогнозируемых по негэнтропийному критерию. Методы инфо-динамики могут найти широкое практическое применение при определении надёжности материалов. Любое творение рук человеческих является термодинамически неравновесной сис-темой. Энтропия их растёт со временем, на каком-то уровне возрастания происходит отказ в работе материала или меха-низма. Общей задачей является достичь как можно большего негэнтропийного ресурса системы.
В сложных системах целевые критерии зависят от ог-ромного количества факторов. Однако, путём эвристических методов и системного анализа удаётся существенно понизить размерность моделей, сузить их поисковое пространство. Для этого необходимо сочетать априорную (теоретическую) и апостериорную (экспериментально-статистическую) инфор-мацию.
Информационные методы полезны при принятии реше-ний в системах, при определении вероятностей в сложном многофакторном пространстве в условиях неопределённости.
Оценка полезности Д достижения цели:
Д = j (V . P) где: V - ценность цели, Р - вероятность её реализации.
Именно вероятность реализации цели в сложных ситу-ациях трудно определяема из-за отсутствия статистических данных и их зависимости от влияющих факторов. В этом случае помогает использование информационных моделей: перевод вероятностей влияния исходных факторов на целе-вые критерии в единицы ОЭ (логарифмы вероятностей) и после сложения обратно в вероятность достижения цели.
Вероятностно-информационные методы необходимо шире применять для оптимизации целей и задач при проек-тировании сложных систем. Модели последних в процессе проектирования постепенно уточняются по критериям ОЭ и ОНГ. Процессы управления и оптимизации при составлении проектов проводят по методам многоэтапного системного и затратного анализа.
При исследовании информационных процессов в об-ществе инфодинамика должна ещё выяснять распределение потоков информации по достоверности и выяснять причины (интересы) сознательного или бессознательного распростра-нения неверной информации, полуправды или даже дезин-формации. Возникают вопросы, как повысить заинтересо-ванность людей в передаче правильной информации, как бо-роться с засекречиванием информации в конкретной конку-рентной борьбе. Большое значение здесь тоже имеет на-дёжное и своевременное определение ценности (стоимости) информации и ОНГ.
Из предыдущего не выясняется причинность передачи информации. Происходит ли это случайно, самопроизвольно или в случае каких-либо особых условий или причин? В тех-нических каналах связи информация передаётся просто по физическим законам путём распространения электрических или других сигналов по воле человека. Но и здесь остав-ляется человеку свобода выбора и право решения, что пере-давать и стоит ли переданное принимать и хранить? Но ин-формационные процессы протекают везде в живой природе, на более низком уровне также в неживой природе. Здесь трудно представить, что кто-то их "направляет" умышленно. Они как-будто протекают "самопроизвольно". Однако, как указано ранее, передача информации происходит только тогда, когда ОНГ приёмной системы увеличивается. Но по второму закону термодинамики увеличиваться произвольно может только ОЭ. Действительно, увеличение ОЭ, т.е. умень-шение ОНГ, рассеяние информации, её старение, забвение, потеря происходит везде.
Повышение ОЭ в инфосистемах нельзя не учитывать в любой практической деятельности. Следовательно "само-произвольность" некодированной передачи информации кажу-щаяся. В действительности для такой передачи необходимы дополнительные условия, которые неполностью раскрыты в кибернетике и синергетике. Во первых, должна быть между системами приёмника и отправителя разность ОНГ относи-тельно события (цели) в принимающей системе. Разность ОНГ показывает неравновесное состояние между системами, для достижения этого затрачена дополнительная энергия или ОНГ. Во вторых, система-приёмник должна иметь структуру, обладающую инструктивными свойствами, т.е. иметь код для дешифрования и хранения информации. Система - отправитель должна быть готовой принимать ОЭ, при этом в большем количестве, чем количество отправленной инфор-мации. В общей изолированной системе "отправитель-при-ёмник информации" количество ОЭ должно повышаться.
По форме и сложности можно информацию разделить на 3 группы:
1. Сознательно передаваемая информация. Свойственна человеку и обществу, передаётся в виде понятий и моделей путём кодирования через инфоканалы.
2. Рефлективно передаваемая информация. Свойственна живым организмам. Передается рефлексами, инстинктами, генетическим кодом, эмоциями.
3. Неформализованная структурно-передаваемая информация. Эффективность и потери при передаче зависят от структуры и условий функционирования системы. В на-правлении системы с меньшим ОНГ передача сильно за-труднена. В других условиях она осуществляется с потерями. Свойственна всем системам в универсуме, в т.ч. в обществе.
До настоящего времени мы рассматривали общие интер-активные инфосвязи между системами. Однако, в иерархи-ческих комплексах систем очень много вертикальных инфор-мационных связей, которые имеют ряд особенностей.
1. Системы, обменивающиеся информацией, находятся на разных уровнях обобщения, тем самым имеют разные качества ОНГ.