Сочинения в двух томах. Том 1 - Юм Дэвид (электронные книги без регистрации txt) 📗
Все это рассуждение применимо и ко времени в связи с одним добавочным аргументом, который не мешает здесь отметить. Неотделимое от времени и некоторым образом составляющее его сущность свойство заключается в том, что каждая из частей времени следует за другой и никакие из этих частей, как бы смежны они ни были, никогда не могут сосуществовать. По той же самой причине, в силу которой 1737 год не может совпасть с текущим 1738 годом, каждый момент должен быть отличен от другого, должен следовать за ним или предшествовать ему. Тогда очевидно, что время в том виде, как оно существует, должно быть составлено из неделимых моментов, ибо если бы мы никогда не могли дойти до конца при делении времени и если бы каждый момент, следуя за другим моментом, не был совершенно отдельным и неделимым, то существовало бы бесконечное число сосуществующих моментов, или частей времени, а это, я думаю, все признают явным противоречием.
Бесконечная делимость пространства, как это явствует из природы движения, предполагает бесконечную делимость времени. Поэтому если последняя невозможна, то таковой же должна быть признана и первая.
Без сомнения, даже самый упорный защитник доктрины бесконечной делимости охотно согласится с тем, что эти аргументы указывают на трудности и невозможно дать на них совершенно ясный и удовлетворительный ответ. Но мы позволим себе заметить по этому поводу, что не может быть ничего более нелепого, чем привычка называть трудностью то, что претендует на значение демонстративного доказательства (demonstration), и пытаться таким путем умалить его силу и очевидность. С доказательствами дело обстоит иначе, чем с вероятностями (probabilities) 20, где могут встретиться трудности и один аргумент может служить противовесом другому, уменьшая авторитетность последнего. Если демонстративное доказательство правильно, оно не допускает противоречащей ему трудности, если же это доказательство неправильно, оно простой софизм и, следовательно, вовсе не может быть такой трудности. Оно или неопровержимо, или лишено всякой силы. Следовательно, говорить о возражениях, ответах и взвешивании аргументов в применении к такому вопросу, как настоящий, — значит сознаваться или в том, что человеческий разум не что иное, как игра словами, или в том, что само лицо, говорящее таким образом, не способно решать подобные вопросы. Демонстративные доказательства могут быть трудными для понимания по причине абстрактности самого предмета, но, будучи поняты, они уже не допускают таких трудностей, которые ослабляли бы их авторитетность.
Математики, правда, говорят обычно, что в данном случае сторонники другого решения вопроса располагают столь же сильными аргументами и против доктрины неделимых точек также можно выставить неопровержимые возражения. Прежде чем рассматривать все эти аргументы и возражения детально, я рассмотрю их тут в совокупности и постараюсь сразу с помощью краткого и решающего рассуждения доказать совершенную невозможность их правильного обоснования.
В метафизике общепринято следующее положение: все, что ясно представляется в сознании, заключает в себе идею возможного существования, или, другими словами, ничто из того, что мы воображаем, не есть абсолютно невозможное. Мы можем образовать идею золотой горы и заключаем отсюда, что такая гора действительно может существовать. Мы не можем образовать идею горы без долины [у ее склонов] и поэтому считаем такую гору невозможной.
Однако известно, что у нас есть идея протяжения, ибо как бы мы могли иначе говорить и рассуждать о нем? Известно и то, что хотя эта идея, как ее представляет воображение, делима на части, или более подчиненные идеи, однако она не делима до бесконечности и не состоит из бесконечного числа частей, ибо представление как того, так и другого превышает наши ограниченные способности. Итак, у нас есть идея протяжения, состоящая из совершенно неделимых частей, или подчиненных идей; следовательно, эта идея не заключает в себе противоречия, следовательно, протяжение может существовать реально в соответствии с ней и все аргументы, которыми пользуются для опровержения возможности математических точек, просто схоластические ухищрения, недостойные нашего внимания.
Мы можем сделать еще один шаг при выводе этих следствий и заключить, что все предполагаемые доказательства бесконечной делимости протяжения также софистичны, поскольку известно, что эти доказательства не могут быть правильными без доказательства невозможности математических точек, а претендовать на подобное доказательство — очевидный абсурд.
Глава 3. О других качествах наших идей пространства и времени
Ни одно открытие не могло бы быть столь благоприятным для решения всех споров относительно идей, чем то, которое мы упомянули выше, а именно что впечатления всегда предшествуют идеям и что всякая идея, предоставленная воображению, появляется сперва в виде соответствующего впечатления. Все эти восприятия так ясны и очевидны, что не оставляют места спорам, тогда как многие из наших идей так темны, что даже ум, их образующий, почти не может указать в точности их природу и состав. Воспользуемся же этим принципом, чтобы еще более глубоко раскрыть природу наших идей пространства и времени.
Открыв глаза и обращая взор на окружающие меня предметы, я воспринимаю много видимых тел; закрыв же глаза снова и размышляя о расстоянии между этими телами, я приобретаю идею протяжения. Так как всякая идея извлекается из некоторого впечатления, в точности сходного с ней, то впечатления, сходные с этой идеей протяжения, должны быть или какими-либо ощущениями, доставляемыми зрением, или же какими-нибудь внутренними впечатлениями, которые вызываются этими ощущениями.
Наши внутренние впечатления суть наши аффекты, эмоции, желания и отвращения; мне думается, ни про одно из этих впечатлений не станут утверждать, что оно является моделью идеи пространства. Итак, не остается ничего, кроме внешних чувств, которые могут доставить нам это первичное впечатление. Но какое же впечатление доставляют нам здесь наши чувства? Это принципиальный вопрос, [решение которого] безапелляционно решает и вопрос о природе самой идеи.
Один вид находящегося передо мной стола достаточен для того, чтобы дать мне идею протяжения. Итак, эта идея заимствована от некоторого впечатления, которое воспринимается в данный момент чувствами и воспроизводится идеей. Но мои чувства доставляют мне только впечатления известным образом расположенных цветных точек. Если мой глаз ощущает еще что-нибудь, пусть это будет мне указано; но если невозможно указать что-либо помимо отмеченного, то мы можем с уверенностью заключить, что идея протяжения не что иное, как копия этих цветных точек и способа их появления.
Предположим, что в том протяженном объекте, или в той совокупности цветных точек, от которой мы получили впервые идею протяжения, точки были пурпурного цвета; отсюда следует, что при каждом повторении указанной идеи мы не только будем располагать эти точки в том же порядке относительно друг друга, но и наделим их точно тем же цветом, с которым мы только и знакомы. Однако впоследствии, познакомившись на опыте с другими цветами: фиолетовым, зеленым, красным, белым, черным, а также с их различными композициями и обнаружив некоторое сходство в расположении цветных точек, из которых эти цвета составлены, мы опускаем, насколько возможно, особенности цвета и образуем отвлеченную идею единственно на основании того расположения точек, или того способа их появления, в котором эти цвета согласуются. Мало того, даже в тех случаях, когда указанное сходство выходит за пределы объектов одного чувства и когда мы находим, что впечатления осязания сходны со зрительными по расположению своих частей, это не мешает абстрактной идее быть представителем тех и других впечатлений в силу их сходства. Все абстрактные идеи в действительности не что иное, как идеи частные, рассматриваемые с известной точки зрения; но, будучи присоединены к общим терминам, они могут представлять огромное разнообразие и охватывать такие объекты, которые сходны в некоторых частностях, в других же весьма отличны друг от друга.