Mybrary.info
mybrary.info » Книги » Научно-образовательная » Философия » Хаос и структура - Лосев Алексей Федорович (читаем бесплатно книги полностью TXT) 📗

Хаос и структура - Лосев Алексей Федорович (читаем бесплатно книги полностью TXT) 📗

Тут можно читать бесплатно Хаос и структура - Лосев Алексей Федорович (читаем бесплатно книги полностью TXT) 📗. Жанр: Философия / Математика. Так же Вы можете читать полную версию (весь текст) онлайн без регистрации и SMS на сайте mybrary.info (MYBRARY) или прочесть краткое содержание, предисловие (аннотацию), описание и ознакомиться с отзывами (комментариями) о произведении.
Перейти на страницу:

Мы можем, однако, задаться целью получить не просто параболу, но и ее абсолютное положение в данной системе координат. Другими словами, мы можем задаться получить интеграл не вообще, но в определенных пределах. Наш аргумент χ принимает в таком случае не всякие значения, какие попало, но значения лишь в данных пределах—скажем, от х—а до х = b. Тогда соответственно получается и два неопределенных интеграла—для х = а и для х — b. Если мы теперь возьмем все то, что произошло между этими пределами, т. е. возьмем разницу между этими интегралами, то уже всякая неопределенность исчезнет, и наш интеграл будет ограничен строго определенными пределами. Это и есть т. н. определенный интеграл, и обозначается он так:

Хаос и структура - _94.jpg

где а есть нижний предел, a b—верхний, и весь интеграл равен

I=ƒ(b) — ƒ(a).

Существует специальная теория определенных интегралов — специальный отдел интегрального исчисления. Тут трактуются вопросы о перестановке пределов, о делении промежутка интегрирования определенного интеграла, об определенном интеграле как функции своих пределов, о бесконечных пределах интеграла и о случаях прерывности подынтегральной функции, об изменении пределов в связи с заменой переменных и пр.

Подобно тому как в дифференциальном исчислении, получивши понятие производной, мы могли распространить это понятие до производных высшего порядка и до частных производных, — мы можем распространить и понятие интеграла. Если возможна производная от производной, полученной тоже как производная, и т. д., т. е. если возможны производные первого, второго, третьего и т. д. порядка, то, очевидно, возможны интегралы не только вообще, но также интегралы двойные и тройные. Равным образом при наличии нескольких независимых переменных возможно и дифференцирование, и интегрирование по какому–нибудь одному переменному (и тогда прочие переменные принимаются за постоянные), т. е. возможны частные производные и частные интегралы.

Кратное и частное интегрирование еще более углубляет и расширяет понятие интеграла.

Этим, однако, далеко не ограничивается область интегрального исчисления. Тут, можно сказать, только начало этой сложнейшей и глубочайшей науки. В поисках дальнейшего углубления и расширения операций под интегралами мы сталкиваемся с рядом дисциплин математического анализа, которые уже требуют для себя ясного и четкого места в общей диалектической системе.

Определенный интеграл есть интеграл, полученный из процесса изменения аргумента χ между данными пределами. Он несет на себе печать ограниченности области изменения аргумента. Можно еще далее усложнять получение интеграла из инобытийных судеб функции. Можно оперировать не только с производными, но и с теми или другими их модификациями в недрах инобытия. Можно идти к интегралу не просто от производной, но от производной в ее той или иной обусловленности и окружающим инобытием. Мы уже видели, что производная может переходить в свою производную, эта последняя—еще в дальнейшую, и т. д. Однако это есть не единственная инобытийная модификация производной. Можно и не переходить в чистое становление, а ограничиться чисто статическим инобытием. Так, если мы имеем х, то такое, напр., выражение, как

Хаос и структура - _95.jpg
, есть некая инобытийная модификация х, нисколько не становящаяся (в диалектическом смысле), а чисто статическая, потому что здесь дан ряд статических изменений, претерпеваемых х–ом. Точно так же и производную можно брать в ее инобытии не обязательно под формой чистого становления, а только лишь под формой статической измененности. И следовательно, может возникнуть задача получения интеграла именно при помощи такой статически–инобытийной обработанной производной.

В данном случае мы имеем дело, несомненно, с инобытием производной и с инобытием в его субстанциальной положенности. И вот спрашивается: как перейти от такой статически–инобытийной положенной производной к соответствующему интегралу? Это и есть предмет 1ч>й науки, входящей в состав математического анализа, которая носит название интегрирования дифференциальных уравнений.

Что такое дифференциальное уравнение и что значит—решить дифференциальное уравнение? Под дифференциальным уравнением понимается такое, которое содержит в себе дифференциалы, или производные, а решить его — значит найти такое соотношение переменных, которое бы ему удовлетворило в смысле тождества. Пусть, напр., имеется уравнение

у n+у=о,

где у nесть производная второго порядка от первообразной функции у. Решить такое уравнение—значит найти выражение для у, которое бы не содержало никаких производных, или дифференциалов, но содержало бы только х. Здесь мы не можем поступить так, как обычно при непосредственном интегрировании функции. Мы находим здесь вторую производную в сложении со значением первообразной функции и должны исходить из суммы этих двух функций. Дана, стало быть, определенная инобытийная переработка производной. Возьмем другое дифференциальное уравнение:

(x+y)dx+xdy=0.

Здесь два дифференциала даны в своеобразном переплетении с аргументом χ и с самой первообразной функцией, т. е. тут тоже определенная инобытийная переработка производной; и нужна специальная манипуляция, чтобы дать такую комбинацию χ и у, в которой бы отсутствовали всякие dx и dy. Приравнение нулю указывает на то, что инобытийная переработка производной (в данном случае — в виде двух дифференциалов) прикреплена здесь к инобытийной субстанциальности своими прочными корнями. Требуется оторваться от этой инобытийной скованности и перейти к первообразной функции, данной как чистый интеграл, несмотря ни на какую связанность производной в этом инобытии. Полученный интеграл, очевидно, будет нести на себе смысловую энергию не просто производной, но и всех ее инобытийных переплетений. Если производную мы вообще понимаем как закон реального инобытия идеальной взаимозависимости, то, очевидно, интегрирование дифференциального уравнения дает интеграл не как просто возвращение от закона реального инобытия идеальной взаимозависимости к самой этой взаимозависимости, но как возвращение к ней от тех или других модификаций и осложнений данного закона реального инобытия, от той или иной его инобытийной переплетенности с другими фактами инобытия.

Таково диалектическое место интегрирования дифференциальных уравнений.

Четкое понимание диалектического места этого вида интегрирования дает возможность найти такое же место и еще для одной дисциплины, входящей в математический анализ, которая в одном отношении даже выходит уже за пределы интегрального исчисления. Прежде чем ее назвать, формулируем еще раз достигнутый нами результат в диалектической интерпретации интегрального исчисления.

Неопределенный интеграл есть возвращение функции к самой себе из недр своего становящегося инобытия, но возвращение пока лишь чисто структурное, пока еще лишенное абсолютно–количественной определенности. Определенный интеграл есть это же возвращение, но уже не просто в смысле структуры, а еще и, кроме того, в смысле количественном; для самопроявлений находимой структуры функции положены четкие количественные пределы. Далее—какая возможна еще дальнейшая интенсификация интегральной определенности, или, другими словами, интенсификация самой интегральности? В определенном интеграле дана определенность границ, очертания. Что может диалектически противостоять этой определенности? Конечно, — определенность того, что содержится внутри границ, внутри очерченных пределов. Это и будет инобытием той определенности, которую содержит в себе определенный интеграл. Такая определенность будет, конечно, зависеть не просто от предельных точек значения аргумента х, но, главным образом, от поведения самой производной, и притом поведения не производной как производной (это имеется в виду уже во всяком неопределенном интеграле), но производной в ее переплетении с другими моментами, дающими ей ту или другую инобытийную определенность и тем самым вносящими эту определенность в недра самого интеграла. Таким образом достигается определенность интеграла внутри его собственных границ; и если определенный интеграл возникает как определенность его количественных границ, то интегрированное дифференциальное уравнение возникает как определенность интеграла внутри тех границ, с появлением которых тоже дается сам определенный интеграл. Ясно, что обе дисциплины интегрального исчисления — теория определенных интегралов и интегрирование дифференциальных уравнений — находятся в четком диалектическом взаимоотрицании.

Перейти на страницу:

Лосев Алексей Федорович читать все книги автора по порядку

Лосев Алексей Федорович - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки mybrary.info.


Хаос и структура отзывы

Отзывы читателей о книге Хаос и структура, автор: Лосев Алексей Федорович. Читайте комментарии и мнения людей о произведении.


Уважаемые читатели и просто посетители нашей библиотеки! Просим Вас придерживаться определенных правил при комментировании литературных произведений.

  • 1. Просьба отказаться от дискриминационных высказываний. Мы защищаем право наших читателей свободно выражать свою точку зрения. Вместе с тем мы не терпим агрессии. На сайте запрещено оставлять комментарий, который содержит унизительные высказывания или призывы к насилию по отношению к отдельным лицам или группам людей на основании их расы, этнического происхождения, вероисповедания, недееспособности, пола, возраста, статуса ветерана, касты или сексуальной ориентации.
  • 2. Просьба отказаться от оскорблений, угроз и запугиваний.
  • 3. Просьба отказаться от нецензурной лексики.
  • 4. Просьба вести себя максимально корректно как по отношению к авторам, так и по отношению к другим читателям и их комментариям.

Надеемся на Ваше понимание и благоразумие. С уважением, администратор mybrary.info.


Прокомментировать
Подтвердите что вы не робот:*