Mybrary.info
mybrary.info » Книги » Научно-образовательная » Философия » Онтология математического дискурса - Гутнер Г Б (читаем бесплатно книги полностью .txt) 📗

Онтология математического дискурса - Гутнер Г Б (читаем бесплатно книги полностью .txt) 📗

Тут можно читать бесплатно Онтология математического дискурса - Гутнер Г Б (читаем бесплатно книги полностью .txt) 📗. Жанр: Философия. Так же Вы можете читать полную версию (весь текст) онлайн без регистрации и SMS на сайте mybrary.info (MYBRARY) или прочесть краткое содержание, предисловие (аннотацию), описание и ознакомиться с отзывами (комментариями) о произведении.
Перейти на страницу:

Действительный предмет явлен нам при экспозиции или при построении. Экспозиция неизменно сопровождается фразой типа: "Пусть ABC - треугольник". Поскольку речь идет о единичном треугольнике должно быть совершенно ясно какой именно треугольник назван ABC. Ответ на этот вопрос может быть только один: "Вот этот, здесь и сейчас нарисованный треугольник". Даже, если треугольник был нарисован раньше, указание на него происходит сейчас, в тот самый момент дискурса, когда возникла потребность (или желание) предъявить его как существующий, действительный объект. Поэтому время, определяемое схемой действительности, есть настоящее время. Конечно, действительный объект, будучи один раз построен, продолжает существовать и дальше. Но узнать о его действительности можно только при актуализации, т.е. при определенном событии дискурса. Актуально событие, происходящее сейчас. Точнее, актуален (действителен) объект, являющийся в происходящем ныне событии. Событие, происшедшее в прошлом, не сохраняет своей действительности, но оставляет след.

Важно иметь в виду, что время определяется (в данном случае как настоящее время, как теперь) именно дискурсом. Проводимое (актуально) построение и сопровождающее его высказывание ("Вот этот треугольник") выделяют настоящее по отношению к прошлому. Это выделение настоящего происходит благодаря наличности прошлого. Прежде всего это обнаруживается тогда, когда мы приступаем к описанию объекта, как это делается, например, при проведении доказательства (apodeixis). Произнося определенное суждение, мы адресуемся к чертежу, как результату проведенного построения. Суждение, произносимое при доказательстве, также произносится теперь, но для него есть нечто, к чему оно относится как к уже происшедшему. Это происшедшее есть событие, оставившее след и поскольку мы имеем возможность обратится к нему снова, т.е. вторично после построения, мы определяем его как прошлое по отношению к произносимому ныне суждению. Объект при этом должен быть вновь воспринят, т.е. вновь стать действительным. Будучи впервые актуализирован при построении, он повторно актуализируется при доказательстве. Ясно, что такая актуализация может происходить многократно. То, что остается после построения, т.е. то, что подлежит актуализации при доказательстве мы и называем следом.

Выше мы говорили, что многократность воспроизведения собственно и означает общность. След, таким образом, есть общее для многих актуализаций. Он также есть возможное - он может быть актуализирован и поэтому находится в согласии с формальными условиями опыта. Но он не совпадает с понятием, хотя бы потому, что понятие может актуализироваться при другом построении и произвести еще один след. Впрочем, актуализация следа требует обращения к понятию, поскольку при ней должна быть задействована та же самая схема, сообразно с которой происходило построение. Поэтому математический дискурс носит отчасти герменевтический характер: глядя на данную графическую конфигурацию, мы воспроизводим ее смыслы, т.е. пытаемся прочесть ее. Под смыслом здесь подразумевается именно понятие. Каждый раз увидеть в следе одно и то же значит воспроизвести одно и то же построение, т.е. актуализировать общее для всех этих построений понятие, действуя сообразной одной и той же схеме.

  5 Дискретность и непрерывность в структуре дискурса

Теперь мы можем рассмотреть как устроен дискурс, проводимый в геометрии. В нем, прежде всего, можно увидеть последовательность событий, сопряженных с актуализацией чего-либо (понятия или следа). Но всякая актуализация есть синтез, в котором определенное (понятием) построение сопровождается произнесением соответствующего синтетического суждения. Последнее может быть и единичным суждением, но произносится всегда, хотя бы в качестве указания на проведенное построение ("пусть ABC - треугольник"). В доказательстве, как мы видели, производится то же самое действие: суждение сопрягается с построением, хотя, в данном случае, и неявным. Это, конечно, не построение, предъявляющее новый объект, а воспроизведение прежнего. Однако действие, производимое при этом, также является синтезом, соотнесением некоторой конструкции с формальными условиями опыта. Благодаря такому действию, конструкция, пребывавшая в виде следа, вновь становится действительной.

Таким образом дискурс есть ряд следующих один за другим синтетических актов. Каждый из них сопряжен с определенным событием и определят некоторый момент теперь. Совершение синтетического акта предполагает наличие действий, совершенных ранее, т.е. некоторых моментов прошлого. Как мы уже говорили ранее, статус прошлого создается наличием следа, с которым так или иначе сопряжено совершение нынешнего синтетического акта. Последовательность дискурса дискретна, поскольку каждое совершаемое действие (равно как и каждое событие) завершимо и все действия различимы, т.е. отделены друг от друга. Последовательность и дискретность дискурса определяет последовательность времени, как ряд отличимых друг от друга моментов 'теперь'. Каждый акт, отнесенный к моменту прошлого, может быть актуализирован, т.е. воспроизведен в настоящем.

Различимость синтетических актов и связанных с ними моментов времени подразумевает, что, следуя один за другим, они должны быть чем-то разделены. Предполагается некоторое между, т.е. какой-то промежуток, отделяющий один момент от другого. Проще всего этот промежуток обнаруживается в процедуре деления отрезка прямой. Рассмотрим подробнее эту незамысловатое, на первый взгляд, действие.

Заметим, прежде всего, что, прочертив отрезок прямой, мы, несомненно, произвели некий синтез, т.е. совершили некоторый синтетический акт. Однако - и в последующем мы еще изучим все следствия этого наблюдения - этот акт нельзя свести к одному моменту времени. В нем должно выделить по крайней мере два ясно различимых события: начало и конец прочерчивания отрезка. Мы ставим две точки, совершая тем самым два последовательных синтетических акта. Но отрезок - это не две точки. Отрезок - это то, что их разделяет, т.е. лежит между ними. Однако с этим "между" еще не связано никакого синтеза. Можно удовлетвориться первым постулатом Евклида, чтобы удостовериться в обоснованности нашего действия, но этого недостаточно, чтобы связать построенный предмет с каким-либо понятием. В частности у нас пока отсутствует критерий для опознания прямой, т.е. для обнаружения ее отличия от любой другой линии, соединяющей две точки. Чтобы изучить структуру прямой, нам нужно исследовать различные лежащие на ней точечные конфигурации. Именно это, между прочим, было сделано при попытках исследовать геометрию прямой линии и построить аксиоматику прямой. Вариант такой аксиоматики, а также историю проблемы можно найти книгах [25] и [26].

Первое действие, которое должно быть произведено, состоит, следовательно, в делении отрезка на две части. Ясно, что, строя новые точки на отрезке прямой, мы можем связывать с этими точками определенные суждения. Более того, по поводу выстраиваемых точечных конструкций должен быть развернут доказательный дискурс, содержащий те же самые части, которые были рассмотрены нами ранее, при изучении структуры античной теоремы. Но всякая новая точка, появляющаяся на отрезке, будет появляться между двумя ранее построенными точками. Этот акт несколько отличен от тех, которые мы обсуждали. Это не есть актуализация следа - происходит новое построение, в результате которого возникает не существовавший ранее объект. Однако оно все же не вполне новое, потому что присутствующий здесь след некоего построения (прочерченный отрезок) существенно определяет то, как будет поставлена точка. Ставя третью точку между двумя построенными, мы, с одной стороны, совершаем действие, следующее за двумя уже совершенными. Но с другой стороны мы вроде бы возвращаемся к прошлому по отношению по крайней мере к одному из двух названных событий. Если две точки определяют начало и конец отрезка, то точка, поставленная между ними, как бы извлекает нечто из предшествующего концу, но следующему после начала. В нашем дискурсе всякое событие связано с поставленной точкой. Но поставить точку между двумя другими, значит обратиться ко времени, когда ничего не происходило. Мы словно извлекаем событие из чистой потенциальности следа и определяем еще один момент между двумя уже бывшими моментами.

Перейти на страницу:

Гутнер Г Б читать все книги автора по порядку

Гутнер Г Б - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки mybrary.info.


Онтология математического дискурса отзывы

Отзывы читателей о книге Онтология математического дискурса, автор: Гутнер Г Б. Читайте комментарии и мнения людей о произведении.


Уважаемые читатели и просто посетители нашей библиотеки! Просим Вас придерживаться определенных правил при комментировании литературных произведений.

  • 1. Просьба отказаться от дискриминационных высказываний. Мы защищаем право наших читателей свободно выражать свою точку зрения. Вместе с тем мы не терпим агрессии. На сайте запрещено оставлять комментарий, который содержит унизительные высказывания или призывы к насилию по отношению к отдельным лицам или группам людей на основании их расы, этнического происхождения, вероисповедания, недееспособности, пола, возраста, статуса ветерана, касты или сексуальной ориентации.
  • 2. Просьба отказаться от оскорблений, угроз и запугиваний.
  • 3. Просьба отказаться от нецензурной лексики.
  • 4. Просьба вести себя максимально корректно как по отношению к авторам, так и по отношению к другим читателям и их комментариям.

Надеемся на Ваше понимание и благоразумие. С уважением, администратор mybrary.info.


Прокомментировать
Подтвердите что вы не робот:*