Диалектика Материи - Кондрашин Игорь (книги бесплатно без онлайн .TXT) 📗
Различают три основных типа фазовых состояний вещества - газообразное, жидкое и твердое. Кроме того, существуют такие фазовые состояния, как плазменное и сверхпроводимое. Отличие всех состояний друг от друга заключается в системной организации входящих в них фщ. единиц, их взаимном расположении в пространстве и уровне их энергии. При переходе вещества из одного фазового состояния в другое прежде всего происходит структурная перестройка системы фн. ячеек, отражающей запас внутренней энергии вещества, его теплоемкости, плотности и т.п. Вместе с тем, любая система единиц уровня Г обладает определенным числом степеней свободы, равным числу условий, которые могут быть изменены произвольно (в определенных пределах), не вызывая в системе фазовых переходов.
Вполне естественно предположить, что в начальный этап движения Материи по уровню Д небольшие объединения Г-образований в дальнейшем приобретали все более сложную структурную композицию, включающую первоначальные микросистемы в качестве фщ. единиц и объединяя их в более крупные макросистемы. Фазовое состояние каждой макросистемы уровня Д прежде всего зависит от состояний всех входящих в него микросистем и характеризуется его термодинамической вероятностью. Таким образом, подчиняясь статистике, система стремится перейти в такое макросостояние, которому соответствует большее число вариантов микросостояний.
С ростом числа вариантов повышается вероятность перехода системы в данное состояние и вместе с тем уменьшается упорядоченность в расположении частиц, то есть увеличивается "беспорядок" в системе. Под этим подразумевается расширение набора как скоростей, так и направленности движения (поступательного, колебательного, вращательного) в пространстве фщ. единиц всех подуровней, составляющих систему (молекул, атомов, электронов и т.д.). Указанное отражает стремление Материи в соответствии с законами своего Развития через системные состояния уравновесить свое движение в качестве-пространстве-времени. Поэтому системы, подчиняясь закономерностям развития в трех категориях, стремятся перейти в состояния, обеспечивающие их наибольшую стабильность, однако при этом все большую роль играет степень изолированности (или замкнутости) данной системы, определяющая ее способность учавствовать в создании фщ. единиц более высокого порядка в соответствии с требованиями .
Кроме того, необходимо учитывать, что каждая система уровня Д обладает уже значительным по величине (по сравнению с более низкими уровнями) запасом внутренней энергии, складывающейся из энергии движения, колебания и вращения всех молекул, энергии движения электронов и ядер в атомах, энергии нуклонов, то есть из суммарной энергии всех видов движения всех фщ. единиц нижних уровней, входящих в структуру данной системы. На запас внутренней энергии не влияет положение или перемещение системы в пространстве в качестве фщ. единицы организационного уровня следующего порядка, поэтому кинетическая и, в отдельных случаях, потенциальная энергия системы в целом не являются компонентами ее внутренней энергии, которая зависит только от оргуровня системы, а также от степени ее изолированности.
В случае отсутствия замкнутости системного образования () в системе могут протекать лишь процессы, ведущие к уменьшению внутренней энергии, совершенствованию системной организации, свободному движению Материи в пространстве-времени-качестве. В замкнутых в той или иной степени системах (не обменивающихся с внешней средой фщ. единицами и энергией) могут протекать только такие процессы, при которых энтропия системы возрастает.
Многое из сказанного подтверждается уже рассмотренной нами формулой , которая после смысловой перестановки трансформируется в . В неизолированных системах развитие материальной субстанции происходит относительно равнозначно в , однако на более высоких уровнях организации, включая уровень Д, вследствие снижения скоростей распространения в пространстве, значительно уменьшается по сравнению с динамикой этого параметра на низких уровнях, энергия совокупной Материи уменьшается на каждый значимый объем пространства и движение в качестве стремится ко все большей пространственной локализации (но не изолированности). В замкнутых же системах (, ) упомянутая формула преображается, как известно, в , то есть система стремится перейти в состояние с максимальным количеством вариантов, вследствие чего процесс может идти всегда до такого состояния, энтропия которого имеет максимальное для существующих условий значение. Таким образом, состояние, в котором система может пребывать при неизменных условиях, является итогом конкуренции двух активных факторов - энтропийного и энергетического. (Аккумулятивный фактор всегда носит пассивный характер).
При переходе вещества в то или иное фазовое состояние в зависимости от условий сталкиваются две противодействующие тенденции: первая - стремление к уменьшению внутренней энергии, приводящее к потере частицами подвижности и к возрастанию порядка в системе, и вторая - стремление к увеличению энтропии, приводящее к уменьшению системного порядка. Любой процесс на любом оргуровне, включая даже такой высокий, как общественный, является отражением борьбы этих противоположных факторов и это всегда необходимо учитывать. В системных процессах уровня Д преобладание одного из факторов ведет к постепенному переходу системы в более термодинамически устойчивое состояние.
При преобладании энергетического фактора процесс идет в сторону уменьшения внутренней энергии системы в результате усиления взаимодействия частиц вещества, сопровождающегося выделением энергии. К таким процессам относятся преимущественно процессы, усложняющие структуру вещества, повышающие его агрегацию: образование молекул из атомов, ассоциация молекул, распрямление и взаимная ориентация макромолекул, сжатие газа, конденсация пара, кристаллизация вещества.
В случае, если превалирует энтропийный фактор, процесс идет в сторону увеличения энтропии системы в результате разъединения частиц вещества и их взаимного отдаления. Это преимущественно процессы, связанные с дезагрегацией вещества: плавление вещества, его испарение, расширение и смешение газов, растворение веществ, диссоциация молекул и т. п.
Рассмотрим вкратце особенности поведения фщ. единиц в структурах вещества при различных фазовых состояниях в системных образованиях оргуровня Д.
Газовое состояние вещества - более вероятное при высоких температурах характеризуется высокими значениями энтропии. Это говорит о полном беспорядке в системе фщ. единиц, совершающих индивидуальные поступательные движения с различными скоростями и практически не взаимодействующих друг с другом. Чем меньше энергия взаимодействия между двумя фщ. единицами, находящимися в контакте (слабые связи), тем больше запас внутренней энергии системы, и тогда даже при низких температурах вещество способно находиться в газовом состоянии. К таким веществам относятся прежде всего инертные газы, атомы которых испытывают друг к другу очень слабое притяжение.
По мере усложнения структурного строения фщ. единиц (вследствие ), их способность к взаимному притяжению возрастает. Это проявляется в повышении температур кипения веществ с возрастанием фн. массы составляющих их элементов. При заданной температуре средняя скорость () молекул газа зависит от их фн. массы: чем больше ее значение, тем больше требуется энергии, чтобы увеличить ее скорость (). Скорости молекул связаны с параметрами состояния системы (температурой, давлением) и поэтому являются важной характеристикой их поведения.
Тепловое движение молекул в веществе обусловливает его способность к диффузии, то есть к самопроизвольному переходу вещества в те области пространства (), где его концентрация меньше или равна нулю. Это свойство проявляется в самых различных природных процессах - испарении, растворении, осмосе, клеении и пр.
При охлаждении веществ, находящихся в газовом состоянии (или при их сильном сжатии), силы взаимодействия между частицами начинают преобладать над энергией их теплового движения и при определенной температуре (индивидуальной для каждого вещества) оно переходит в жидкое состояние. Необходимым условием такого перехода является установление связей между отдельными фщ. единицами (молекулами или атомами), в результате чего внутренняя энергия системы становится меньше. Жидкое состояние вещества являет собой более "организованную" структуру, чем его газовое состояние, но оно менее стабильно, то есть подвержено более частым изменениям в течение различных промежутков времени (), чем твердое вещество. Поэтому жидкое состояние является промежуточным между газовым и твердым. Молекулы жидкости, имея возможность перемещения, сохраняют определенный порядок во взаимном расположении. По структуре и по характеру взаимодействий между частицами жидкость более сходна с кристаллами, нежели с газами. Как и твердые тела, жидкости обладают определенным объемом, что также отличает их от газов. Принципиальным отличием жидкости от твердого тела является отсутствие собственной формы.