Mybrary.info
mybrary.info » Книги » Научно-образовательная » Философия » Новый ум короля: О компьютерах, мышлении и законах физики - Пенроуз Роджер (книги онлайн бесплатно TXT) 📗

Новый ум короля: О компьютерах, мышлении и законах физики - Пенроуз Роджер (книги онлайн бесплатно TXT) 📗

Тут можно читать бесплатно Новый ум короля: О компьютерах, мышлении и законах физики - Пенроуз Роджер (книги онлайн бесплатно TXT) 📗. Жанр: Философия / Прочая компьютерная литература / Физика. Так же Вы можете читать полную версию (весь текст) онлайн без регистрации и SMS на сайте mybrary.info (MYBRARY) или прочесть краткое содержание, предисловие (аннотацию), описание и ознакомиться с отзывами (комментариями) о произведении.
Перейти на страницу:

Чтобы лучше понять природу описываемых здесь равновесия и флуюуаций, вспомним понятие фазового пространства, с которым мы познакомились в главах 5 и 7, в частности, в связи с понятием энтропии. На рис. 8.4 условно изображено все фазовое пространство Р содержимого ящика Хокинга.

Новый ум короля: О компьютерах, мышлении и законах физики - i_207.png

Рис. 8.4. Фазовое пространство P ящика Хокинга. Область A соответствует состояниям без черных дыр внутри ящика, а область B — состояниям, при которых внутри ящика есть хотя бы одна черная дыра

Как мы помним, фазовое пространство — это пространство с большим количеством измерений, каждая точка которого полностью отображает одно из возможных состояний рассматриваемой системы — в данном случае содержимого ящика. Таким образом, каждая точка Р содержит информацию о положениях и импульсах всех находящихся в ящике частиц, а также всю необходимую информацию о геометрии пространства-времени внутри ящика. Расположенная в правой части рис. 8.4 подобласть B (фазового пространства Р) представляет совокупность всех состояний с черной дырой внутри ящика (включая все случаи наличия более чем одной черной дыры), а расположенная слева область A представляет совокупность всех состояний без черных дыр. Представим себе дальнейшее разбиение областей A и B на меньшие ячейки для построения «грубого разбиения», необходимого для точного определения энтропии (см. рис. 7.3 гл.7 «Что такое энтропия?»). Точный вид этого разбиения нас здесь не интересует. На этом этапе нам важно лишь, что самая большая из рассматриваемых ячеек — та, что представляет состояния теплового равновесия при наличии черной дыры, — занимает большую часть области B, а (несколько меньшая) большая часть области A представляет то, что, как кажется, является тепловым равновесием, но без единой черной дыры.

Вспомним теперь, что на каждом фазовом пространстве существует поле стрелок (векторное поле), описывающих эволюцию физической системы во времени (см. главу 5, «Фазовое пространство», а также рис. 5.11). Таким образом, чтобы узнать, что произойдет с нашей системой в следующий момент, нужно просто сдвинуться вдоль стрелок (рис. 8.5).

Новый ум короля: О компьютерах, мышлении и законах физики - i_208.png

Рис. 8.5. «Гамильтонов поток» содержимого хокинговского ящика (см. рис. 5.11). Линии тока, пересекающие границу между областями в направлении от A к B, соответствуют коллапсу в черную дыру, а линии, пересекающие границу от B к A — исчезновению черной дыры в результате хокинговского испарения

Некоторые стрелки перейдут из области A в область B. Такое происходит при возникновении черной дыры в результате гравитационного коллапса вещества. А пересекают ли какие-нибудь стрелки границу между областями в обратном направлении из B в A? Такие стрелки действительно есть, но только при условии учета хокинговского испарения, о котором упоминалось ранее. В строгой классической общей теории относительности черные дыры способны только поглощать и не в состоянии ничего испускать. Но Хокингу [1975] удалось показать путем учета эффектов квантовой механики, что черные дыры все же способны — на квантовом уровне — кое-что испускать в процессе хокинговского излучения. (Это происходит в рамках квантового процесса «рождения виртуальных пар», при котором частицы и античастицы постоянно создаются из вакуума — как правило, лишь на мгновение, чтобы тут же аннигилировать, исчезнув без следа. Если есть черная дыра, она может «проглотить» одну из частиц такой пары до того, как произойдет аннигиляция, и вторая частица может покинуть черную дыру. Хокинговское излучение как раз и состоит из этих убежавших частиц.) При обычных обстоятельствах хокинговское излучение чрезвычайно слабое. Но в состоянии теплового равновесия величина энергии, теряемой черной дырой в результате хокинговского излучения, в точности компенсируется энергией, получаемой черной дырой в результате поглощения других «тепловых частиц» из окружающей «тепловой ванны», в которой дыра находится. В результате «флуктуаций» иногда может возникать небольшой избыток излучения или недостаток поглощения, что приводит к потере энергии черной дырой. Теряя энергию, черная дыра теряет также и массу (согласно формуле Эйнштейна Е=mc2) и, согласно законам, управляющим хокинговским излучением, становится чуть-чуть горячее. В очень редких случаях, если флуктуация оказывается достаточно большой, черная дыра может даже пойти в разнос, постоянно разогреваясь, теряя все больше энергии в этом процессе, непрерывно уменьшаясь в размерах, пока наконец (как мы предполагаем) совершенно не исчезнет в результате бурного взрыва! Когда это случится (и если считать, что других дыр в ящике нет), мы оказываемся в ситуации перехода из области B в область A фазового пространства Р, и значит действительно есть стрелки, идущие из области B в область A!

Я хотел бы сделать замечание о смысле, который я вкладываю здесь в понятие «флуктуация». Вспомним ячейки грубого разбиения, рассмотренные в предыдущей главе. Точки фазового пространства, принадлежащие одной ячейке, считаются (макроскопически) «неотличимыми» друг от друга. Энтропия возрастает, потому что, следуя вдоль стрелок, с течением времени мы, как правило, переходим ко все более крупным ячейкам. В конечном итоге точка фазового пространства оказывается затерянной внутри самой большой ячейки — а именно той, что соответствует тепловому равновесию (максимальной энтропии). Однако, это будет справедливо только до определенной степени. Если подождать достаточно долго, то точка фазового пространства окажется в какой-то момент в ячейке меньших размеров, и энтропия, соответственно, уменьшится. Как правило, это состояние продлится (сравнительно) недолго и энтропия вскоре снова увеличится при возвращении точки фазового пространства в самую крупную ячейку. Это — флуктуация, сопровождаемая мимолетным понижением энтропии. Обычно значительного падения энтропии не происходит, но в очень редких случаях возникает огромная флуктуация и энтропия может уменьшиться существенно и остаться малой на протяжении значительного времени.

Как раз такого рода событие и должно произойти, чтобы произошел переход из области B в область A через процесс хокинговского испарения. Очень большая флуктуация нужна потому, что маленькую ячейку необходимо протащить через то самое место, где стрелки пересекают границу между областями B и A Точно также, если наша точка фазового пространства находится внутри большой ячейки в области A (представляющей совокупность состояний теплового равновесия без черных дыр), пройдет еще очень много времени, прежде чем произойдет гравитационный коллапс и точка перейдет внутрь области B. И снова нужна большая флуктуация. (Тепловое излучения неохотно идет на гравитационный коллапс!)

Каких стрелок больше — тех, что идут из A в B; тех, что идут из B в A; или же их число стрелок обоих типов одинаково? Для нас это очень важно. Вопрос можно сформулировать иначе: что природе «проще сделать» — породить черную дыру, заставив сколлапсировать частицы в состоянии теплового равновесия или же избавиться от черной дыры через хокинговское испарение? А может оба процесса одинаково «трудные»? Строго говоря, нас интересует не число стрелок, а скорость потока объема фазового пространства. Представьте себе, что фазовое пространство заполнено некой (многомерной) несжимаемой жидкостью. Стрелки отображают поток этой жидкости. Вспомним теперь описанную в главе 5 («Неумолимое возрастание энтропии») теорему Лиувилля, гласящую, что фазовый поток сохраняет объем элемента фазового пространства — а это как раз и означает, что наша жидкость, заполняющая фазовое пространство, действительно является несжимаемой! Теорема Лиувилля как будто говорит нам, что поток из A в B должен равняться потоку из B в A, поскольку фазовая жидкость, будучи несжимаемой, не может накапливаться на одной какой-нибудь стороне. Таким образом, кажется, что черную дыру так же трудно создать из теплового излучения, как и разрушить ее!

Перейти на страницу:

Пенроуз Роджер читать все книги автора по порядку

Пенроуз Роджер - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки mybrary.info.


Новый ум короля: О компьютерах, мышлении и законах физики отзывы

Отзывы читателей о книге Новый ум короля: О компьютерах, мышлении и законах физики, автор: Пенроуз Роджер. Читайте комментарии и мнения людей о произведении.


Уважаемые читатели и просто посетители нашей библиотеки! Просим Вас придерживаться определенных правил при комментировании литературных произведений.

  • 1. Просьба отказаться от дискриминационных высказываний. Мы защищаем право наших читателей свободно выражать свою точку зрения. Вместе с тем мы не терпим агрессии. На сайте запрещено оставлять комментарий, который содержит унизительные высказывания или призывы к насилию по отношению к отдельным лицам или группам людей на основании их расы, этнического происхождения, вероисповедания, недееспособности, пола, возраста, статуса ветерана, касты или сексуальной ориентации.
  • 2. Просьба отказаться от оскорблений, угроз и запугиваний.
  • 3. Просьба отказаться от нецензурной лексики.
  • 4. Просьба вести себя максимально корректно как по отношению к авторам, так и по отношению к другим читателям и их комментариям.

Надеемся на Ваше понимание и благоразумие. С уважением, администратор mybrary.info.


Прокомментировать
Подтвердите что вы не робот:*